Back to Index

## 
## ********************* PROCESS for R Version 4.1.1 ********************* 
##  
##            Written by Andrew F. Hayes, Ph.D.  www.afhayes.com              
##    Documentation available in Hayes (2022). www.guilford.com/p/hayes3   
##  
## *********************************************************************** 
##  
## PROCESS is now ready for use.
## Copyright 2022 by Andrew F. Hayes ALL RIGHTS RESERVED
## Workshop schedule at http://haskayne.ucalgary.ca/CCRAM
## 

Direct Effect

## 
## Call:
## lm(formula = punishment ~ emo_sec_check, data = df)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -5.6110 -2.8995 -0.0341  2.2448  4.9659 
## 
## Coefficients:
##               Estimate Std. Error t value Pr(>|t|)    
## (Intercept)    5.03410    0.27094  18.580   <2e-16 ***
## emo_sec_check  0.14423    0.07056   2.044   0.0419 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 3.088 on 273 degrees of freedom
## Multiple R-squared:  0.01507,    Adjusted R-squared:  0.01147 
## F-statistic: 4.178 on 1 and 273 DF,  p-value: 0.0419

SES

Process Report

Mediation analysis: emo_sec_check -> SES -> punishment

## 
## ********************* PROCESS for R Version 4.1.1 ********************* 
##  
##            Written by Andrew F. Hayes, Ph.D.  www.afhayes.com              
##    Documentation available in Hayes (2022). www.guilford.com/p/hayes3   
##  
## *********************************************************************** 
##                      
## Model : 4            
##     Y : punishment   
##     X : emo_sec_check
##     M : SES          
## 
## Sample size: 275
## 
## Custom seed: 1234
## 
## 
## *********************************************************************** 
## Outcome Variable: SES
## 
## Model Summary: 
##            R       R-sq        MSE          F        df1        df2          p
##       0.4123     0.1700     2.4782    55.9285     1.0000   273.0000     0.0000
## 
## Model: 
##                    coeff         se          t          p       LLCI       ULCI
## constant          2.5134     0.1381    18.1990     0.0000     2.2416     2.7853
## emo_sec_check     0.2690     0.0360     7.4785     0.0000     0.1982     0.3398
## 
## *********************************************************************** 
## Outcome Variable: punishment
## 
## Model Summary: 
##            R       R-sq        MSE          F        df1        df2          p
##       0.1286     0.0165     9.5586     2.2861     2.0000   272.0000     0.1036
## 
## Model: 
##                    coeff         se          t          p       LLCI       ULCI
## constant          4.8445     0.4035    12.0055     0.0000     4.0500     5.6389
## emo_sec_check     0.1239     0.0775     1.5985     0.1111    -0.0287     0.2766
## SES               0.0754     0.1189     0.6347     0.5261    -0.1586     0.3095
## 
## ************************ TOTAL EFFECT MODEL *************************** 
## Outcome Variable: punishment
## 
## Model Summary: 
##            R       R-sq        MSE          F        df1        df2          p
##       0.1228     0.0151     9.5377     4.1784     1.0000   273.0000     0.0419
## 
## Model: 
##                    coeff         se          t          p       LLCI       ULCI
## constant          5.0341     0.2709    18.5799     0.0000     4.5007     5.5675
## emo_sec_check     0.1442     0.0706     2.0441     0.0419     0.0053     0.2831
## 
## *********************************************************************** 
## Bootstrapping in progress. Please wait.
## 
## ************ TOTAL, DIRECT, AND INDIRECT EFFECTS OF X ON Y ************
## 
## Total effect of X on Y:
##       effect         se          t          p       LLCI       ULCI
##       0.1442     0.0706     2.0441     0.0419     0.0053     0.2831
## 
## Direct effect of X on Y:
##       effect         se          t          p       LLCI       ULCI
##       0.1239     0.0775     1.5985     0.1111    -0.0287     0.2766
## 
## Indirect effect(s) of X on Y:
##         Effect     BootSE   BootLLCI   BootULCI
## SES     0.0203     0.0350    -0.0507     0.0891
## 
## Normal theory test for indirect effect(s):
##         Effect         se          Z          p
## SES     0.0203     0.0324     0.6269     0.5307
## 
## ******************** ANALYSIS NOTES AND ERRORS ************************ 
## 
## Level of confidence for all confidence intervals in output: 95
## 
## Number of bootstraps for percentile bootstrap confidence intervals: 10000

Plot

SEImpairment

Process Report

Mediation analysis: emo_sec_check -> SEImpairment -> punishment

## 
## ********************* PROCESS for R Version 4.1.1 ********************* 
##  
##            Written by Andrew F. Hayes, Ph.D.  www.afhayes.com              
##    Documentation available in Hayes (2022). www.guilford.com/p/hayes3   
##  
## *********************************************************************** 
##                      
## Model : 4            
##     Y : punishment   
##     X : emo_sec_check
##     M : SEImpairment 
## 
## Sample size: 275
## 
## Custom seed: 1234
## 
## 
## *********************************************************************** 
## Outcome Variable: SEImpairment
## 
## Model Summary: 
##            R       R-sq        MSE          F        df1        df2          p
##       0.8679     0.7532     0.7479   833.3532     1.0000   273.0000     0.0000
## 
## Model: 
##                    coeff         se          t          p       LLCI       ULCI
## constant          4.6390     0.0759    61.1435     0.0000     4.4896     4.7884
## emo_sec_check    -0.5704     0.0198   -28.8679     0.0000    -0.6093    -0.5315
## 
## *********************************************************************** 
## Outcome Variable: punishment
## 
## Model Summary: 
##            R       R-sq        MSE          F        df1        df2          p
##       0.1319     0.0174     9.5503     2.4063     2.0000   272.0000     0.0921
## 
## Model: 
##                    coeff         se          t          p       LLCI       ULCI
## constant          4.2316     1.0393     4.0716     0.0001     2.1855     6.2777
## emo_sec_check     0.2429     0.1421     1.7089     0.0886    -0.0369     0.5227
## SEImpairment      0.1730     0.2163     0.7998     0.4245    -0.2528     0.5988
## 
## ************************ TOTAL EFFECT MODEL *************************** 
## Outcome Variable: punishment
## 
## Model Summary: 
##            R       R-sq        MSE          F        df1        df2          p
##       0.1228     0.0151     9.5377     4.1784     1.0000   273.0000     0.0419
## 
## Model: 
##                    coeff         se          t          p       LLCI       ULCI
## constant          5.0341     0.2709    18.5799     0.0000     4.5007     5.5675
## emo_sec_check     0.1442     0.0706     2.0441     0.0419     0.0053     0.2831
## 
## *********************************************************************** 
## Bootstrapping in progress. Please wait.
## 
## ************ TOTAL, DIRECT, AND INDIRECT EFFECTS OF X ON Y ************
## 
## Total effect of X on Y:
##       effect         se          t          p       LLCI       ULCI
##       0.1442     0.0706     2.0441     0.0419     0.0053     0.2831
## 
## Direct effect of X on Y:
##       effect         se          t          p       LLCI       ULCI
##       0.2429     0.1421     1.7089     0.0886    -0.0369     0.5227
## 
## Indirect effect(s) of X on Y:
##                  Effect     BootSE   BootLLCI   BootULCI
## SEImpairment    -0.0987     0.1290    -0.3393     0.1678
## 
## Normal theory test for indirect effect(s):
##                  Effect         se          Z          p
## SEImpairment    -0.0987     0.1235    -0.7990     0.4243
## 
## ******************** ANALYSIS NOTES AND ERRORS ************************ 
## 
## Level of confidence for all confidence intervals in output: 95
## 
## Number of bootstraps for percentile bootstrap confidence intervals: 10000

Plot

surprise

Process Report

Mediation analysis: emo_sec_check -> surprise -> punishment

## 
## ********************* PROCESS for R Version 4.1.1 ********************* 
##  
##            Written by Andrew F. Hayes, Ph.D.  www.afhayes.com              
##    Documentation available in Hayes (2022). www.guilford.com/p/hayes3   
##  
## *********************************************************************** 
##                      
## Model : 4            
##     Y : punishment   
##     X : emo_sec_check
##     M : surprise     
## 
## Sample size: 275
## 
## Custom seed: 1234
## 
## 
## *********************************************************************** 
## Outcome Variable: surprise
## 
## Model Summary: 
##            R       R-sq        MSE          F        df1        df2          p
##       0.6243     0.3897     2.7967   174.3330     1.0000   273.0000     0.0000
## 
## Model: 
##                    coeff         se          t          p       LLCI       ULCI
## constant          2.0148     0.1467    13.7323     0.0000     1.7259     2.3036
## emo_sec_check     0.5045     0.0382    13.2035     0.0000     0.4293     0.5797
## 
## *********************************************************************** 
## Outcome Variable: punishment
## 
## Model Summary: 
##            R       R-sq        MSE          F        df1        df2          p
##       0.1705     0.0291     9.4368     4.0704     2.0000   272.0000     0.0181
## 
## Model: 
##                    coeff         se          t          p       LLCI       ULCI
## constant          5.4775     0.3504    15.6303     0.0000     4.7875     6.1674
## emo_sec_check     0.2552     0.0898     2.8410     0.0048     0.0784     0.4321
## surprise         -0.2201     0.1112    -1.9793     0.0488    -0.4389    -0.0012
## 
## ************************ TOTAL EFFECT MODEL *************************** 
## Outcome Variable: punishment
## 
## Model Summary: 
##            R       R-sq        MSE          F        df1        df2          p
##       0.1228     0.0151     9.5377     4.1784     1.0000   273.0000     0.0419
## 
## Model: 
##                    coeff         se          t          p       LLCI       ULCI
## constant          5.0341     0.2709    18.5799     0.0000     4.5007     5.5675
## emo_sec_check     0.1442     0.0706     2.0441     0.0419     0.0053     0.2831
## 
## *********************************************************************** 
## Bootstrapping in progress. Please wait.
## 
## ************ TOTAL, DIRECT, AND INDIRECT EFFECTS OF X ON Y ************
## 
## Total effect of X on Y:
##       effect         se          t          p       LLCI       ULCI
##       0.1442     0.0706     2.0441     0.0419     0.0053     0.2831
## 
## Direct effect of X on Y:
##       effect         se          t          p       LLCI       ULCI
##       0.2552     0.0898     2.8410     0.0048     0.0784     0.4321
## 
## Indirect effect(s) of X on Y:
##              Effect     BootSE   BootLLCI   BootULCI
## surprise    -0.1110     0.0584    -0.2276     0.0025
## 
## Normal theory test for indirect effect(s):
##              Effect         se          Z          p
## surprise    -0.1110     0.0569    -1.9520     0.0509
## 
## ******************** ANALYSIS NOTES AND ERRORS ************************ 
## 
## Level of confidence for all confidence intervals in output: 95
## 
## Number of bootstraps for percentile bootstrap confidence intervals: 10000

Plot

sympathy

Process Report

Mediation analysis: emo_sec_check -> sympathy -> punishment

## 
## ********************* PROCESS for R Version 4.1.1 ********************* 
##  
##            Written by Andrew F. Hayes, Ph.D.  www.afhayes.com              
##    Documentation available in Hayes (2022). www.guilford.com/p/hayes3   
##  
## *********************************************************************** 
##                      
## Model : 4            
##     Y : punishment   
##     X : emo_sec_check
##     M : sympathy     
## 
## Sample size: 275
## 
## Custom seed: 1234
## 
## 
## *********************************************************************** 
## Outcome Variable: sympathy
## 
## Model Summary: 
##            R       R-sq        MSE          F        df1        df2          p
##       0.4593     0.2109     2.3359    72.9835     1.0000   273.0000     0.0000
## 
## Model: 
##                    coeff         se          t          p       LLCI       ULCI
## constant          3.2029     0.1341    23.8872     0.0000     2.9389     3.4669
## emo_sec_check    -0.2983     0.0349    -8.5430     0.0000    -0.3671    -0.2296
## 
## *********************************************************************** 
## Outcome Variable: punishment
## 
## Model Summary: 
##            R       R-sq        MSE          F        df1        df2          p
##       0.3468     0.1203     8.5505    18.5899     2.0000   272.0000     0.0000
## 
## Model: 
##                    coeff         se          t          p       LLCI       ULCI
## constant          7.1491     0.4510    15.8530     0.0000     6.2613     8.0369
## emo_sec_check    -0.0528     0.0752    -0.7014     0.4837    -0.2008     0.0953
## sympathy         -0.6603     0.1158    -5.7026     0.0000    -0.8883    -0.4324
## 
## ************************ TOTAL EFFECT MODEL *************************** 
## Outcome Variable: punishment
## 
## Model Summary: 
##            R       R-sq        MSE          F        df1        df2          p
##       0.1228     0.0151     9.5377     4.1784     1.0000   273.0000     0.0419
## 
## Model: 
##                    coeff         se          t          p       LLCI       ULCI
## constant          5.0341     0.2709    18.5799     0.0000     4.5007     5.5675
## emo_sec_check     0.1442     0.0706     2.0441     0.0419     0.0053     0.2831
## 
## *********************************************************************** 
## Bootstrapping in progress. Please wait.
## 
## ************ TOTAL, DIRECT, AND INDIRECT EFFECTS OF X ON Y ************
## 
## Total effect of X on Y:
##       effect         se          t          p       LLCI       ULCI
##       0.1442     0.0706     2.0441     0.0419     0.0053     0.2831
## 
## Direct effect of X on Y:
##       effect         se          t          p       LLCI       ULCI
##      -0.0528     0.0752    -0.7014     0.4837    -0.2008     0.0953
## 
## Indirect effect(s) of X on Y:
##              Effect     BootSE   BootLLCI   BootULCI
## sympathy     0.1970     0.0433     0.1173     0.2870
## 
## Normal theory test for indirect effect(s):
##              Effect         se          Z          p
## sympathy     0.1970     0.0417     4.7206     0.0000
## 
## ******************** ANALYSIS NOTES AND ERRORS ************************ 
## 
## Level of confidence for all confidence intervals in output: 95
## 
## Number of bootstraps for percentile bootstrap confidence intervals: 10000

Plot

Moral self-expression

SE1, SE2

Process Report

Mediation analysis: emo_sec_check -> SE -> punishment

## 
## ********************* PROCESS for R Version 4.1.1 ********************* 
##  
##            Written by Andrew F. Hayes, Ph.D.  www.afhayes.com              
##    Documentation available in Hayes (2022). www.guilford.com/p/hayes3   
##  
## *********************************************************************** 
##                      
## Model : 4            
##     Y : punishment   
##     X : emo_sec_check
##     M : SE           
## 
## Sample size: 275
## 
## Custom seed: 1234
## 
## 
## *********************************************************************** 
## Outcome Variable: SE
## 
## Model Summary: 
##            R       R-sq        MSE          F        df1        df2          p
##       0.2105     0.0443     1.6855    12.6533     1.0000   273.0000     0.0004
## 
## Model: 
##                    coeff         se          t          p       LLCI       ULCI
## constant          3.7166     0.1139    32.6308     0.0000     3.4924     3.9409
## emo_sec_check     0.1055     0.0297     3.5571     0.0004     0.0471     0.1639
## 
## *********************************************************************** 
## Outcome Variable: punishment
## 
## Model Summary: 
##            R       R-sq        MSE          F        df1        df2          p
##       0.3327     0.1107     8.6435    16.9270     2.0000   272.0000     0.0000
## 
## Model: 
##                    coeff         se          t          p       LLCI       ULCI
## constant          2.2795     0.5710     3.9923     0.0001     1.1554     3.4036
## emo_sec_check     0.0660     0.0687     0.9610     0.3374    -0.0692     0.2013
## SE                0.7412     0.1371     5.4077     0.0000     0.4713     1.0110
## 
## ************************ TOTAL EFFECT MODEL *************************** 
## Outcome Variable: punishment
## 
## Model Summary: 
##            R       R-sq        MSE          F        df1        df2          p
##       0.1228     0.0151     9.5377     4.1784     1.0000   273.0000     0.0419
## 
## Model: 
##                    coeff         se          t          p       LLCI       ULCI
## constant          5.0341     0.2709    18.5799     0.0000     4.5007     5.5675
## emo_sec_check     0.1442     0.0706     2.0441     0.0419     0.0053     0.2831
## 
## *********************************************************************** 
## Bootstrapping in progress. Please wait.
## 
## ************ TOTAL, DIRECT, AND INDIRECT EFFECTS OF X ON Y ************
## 
## Total effect of X on Y:
##       effect         se          t          p       LLCI       ULCI
##       0.1442     0.0706     2.0441     0.0419     0.0053     0.2831
## 
## Direct effect of X on Y:
##       effect         se          t          p       LLCI       ULCI
##       0.0660     0.0687     0.9610     0.3374    -0.0692     0.2013
## 
## Indirect effect(s) of X on Y:
##        Effect     BootSE   BootLLCI   BootULCI
## SE     0.0782     0.0315     0.0261     0.1493
## 
## Normal theory test for indirect effect(s):
##        Effect         se          Z          p
## SE     0.0782     0.0266     2.9370     0.0033
## 
## ******************** ANALYSIS NOTES AND ERRORS ************************ 
## 
## Level of confidence for all confidence intervals in output: 95
## 
## Number of bootstraps for percentile bootstrap confidence intervals: 10000

Plot

Moral self-formative control

SFC1, SFC2, SFC3, and SFC4

Process Report

Mediation analysis: emo_sec_check -> SFC -> punishment

## 
## ********************* PROCESS for R Version 4.1.1 ********************* 
##  
##            Written by Andrew F. Hayes, Ph.D.  www.afhayes.com              
##    Documentation available in Hayes (2022). www.guilford.com/p/hayes3   
##  
## *********************************************************************** 
##                      
## Model : 4            
##     Y : punishment   
##     X : emo_sec_check
##     M : SFC          
## 
## Sample size: 275
## 
## Custom seed: 1234
## 
## 
## *********************************************************************** 
## Outcome Variable: SFC
## 
## Model Summary: 
##            R       R-sq        MSE          F        df1        df2          p
##       0.5567     0.3100     0.9896   122.6345     1.0000   273.0000     0.0000
## 
## Model: 
##                    coeff         se          t          p       LLCI       ULCI
## constant          3.1244     0.0873    35.7994     0.0000     2.9526     3.2962
## emo_sec_check     0.2517     0.0227    11.0740     0.0000     0.2069     0.2964
## 
## *********************************************************************** 
## Outcome Variable: punishment
## 
## Model Summary: 
##            R       R-sq        MSE          F        df1        df2          p
##       0.2547     0.0648     9.0890     9.4308     2.0000   272.0000     0.0001
## 
## Model: 
##                    coeff         se          t          p       LLCI       ULCI
## constant          2.8536     0.6312     4.5212     0.0000     1.6110     4.0962
## emo_sec_check    -0.0314     0.0829    -0.3789     0.7050    -0.1947     0.1318
## SFC               0.6979     0.1834     3.8049     0.0002     0.3368     1.0590
## 
## ************************ TOTAL EFFECT MODEL *************************** 
## Outcome Variable: punishment
## 
## Model Summary: 
##            R       R-sq        MSE          F        df1        df2          p
##       0.1228     0.0151     9.5377     4.1784     1.0000   273.0000     0.0419
## 
## Model: 
##                    coeff         se          t          p       LLCI       ULCI
## constant          5.0341     0.2709    18.5799     0.0000     4.5007     5.5675
## emo_sec_check     0.1442     0.0706     2.0441     0.0419     0.0053     0.2831
## 
## *********************************************************************** 
## Bootstrapping in progress. Please wait.
## 
## ************ TOTAL, DIRECT, AND INDIRECT EFFECTS OF X ON Y ************
## 
## Total effect of X on Y:
##       effect         se          t          p       LLCI       ULCI
##       0.1442     0.0706     2.0441     0.0419     0.0053     0.2831
## 
## Direct effect of X on Y:
##       effect         se          t          p       LLCI       ULCI
##      -0.0314     0.0829    -0.3789     0.7050    -0.1947     0.1318
## 
## Indirect effect(s) of X on Y:
##         Effect     BootSE   BootLLCI   BootULCI
## SFC     0.1757     0.0470     0.0857     0.2714
## 
## Normal theory test for indirect effect(s):
##         Effect         se          Z          p
## SFC     0.1757     0.0490     3.5853     0.0003
## 
## ******************** ANALYSIS NOTES AND ERRORS ************************ 
## 
## Level of confidence for all confidence intervals in output: 95
## 
## Number of bootstraps for percentile bootstrap confidence intervals: 10000

Plot

upbringing

SE3

Process Report

Mediation analysis: emo_sec_check -> upbringing -> punishment

## 
## ********************* PROCESS for R Version 4.1.1 ********************* 
##  
##            Written by Andrew F. Hayes, Ph.D.  www.afhayes.com              
##    Documentation available in Hayes (2022). www.guilford.com/p/hayes3   
##  
## *********************************************************************** 
##                      
## Model : 4            
##     Y : punishment   
##     X : emo_sec_check
##     M : upbringing   
## 
## Sample size: 275
## 
## Custom seed: 1234
## 
## 
## *********************************************************************** 
## Outcome Variable: upbringing
## 
## Model Summary: 
##            R       R-sq        MSE          F        df1        df2          p
##       0.7172     0.5144     1.7560   289.2258     1.0000   273.0000     0.0000
## 
## Model: 
##                    coeff         se          t          p       LLCI       ULCI
## constant          4.5670     0.1163    39.2830     0.0000     4.3381     4.7959
## emo_sec_check    -0.5149     0.0303   -17.0066     0.0000    -0.5745    -0.4553
## 
## *********************************************************************** 
## Outcome Variable: punishment
## 
## Model Summary: 
##            R       R-sq        MSE          F        df1        df2          p
##       0.1344     0.0181     9.5438     2.5004     2.0000   272.0000     0.0839
## 
## Model: 
##                    coeff         se          t          p       LLCI       ULCI
## constant          5.6194     0.6991     8.0385     0.0000     4.2432     6.9957
## emo_sec_check     0.0782     0.1013     0.7724     0.4405    -0.1212     0.2777
## upbringing       -0.1282     0.1411    -0.9083     0.3645    -0.4059     0.1496
## 
## ************************ TOTAL EFFECT MODEL *************************** 
## Outcome Variable: punishment
## 
## Model Summary: 
##            R       R-sq        MSE          F        df1        df2          p
##       0.1228     0.0151     9.5377     4.1784     1.0000   273.0000     0.0419
## 
## Model: 
##                    coeff         se          t          p       LLCI       ULCI
## constant          5.0341     0.2709    18.5799     0.0000     4.5007     5.5675
## emo_sec_check     0.1442     0.0706     2.0441     0.0419     0.0053     0.2831
## 
## *********************************************************************** 
## Bootstrapping in progress. Please wait.
## 
## ************ TOTAL, DIRECT, AND INDIRECT EFFECTS OF X ON Y ************
## 
## Total effect of X on Y:
##       effect         se          t          p       LLCI       ULCI
##       0.1442     0.0706     2.0441     0.0419     0.0053     0.2831
## 
## Direct effect of X on Y:
##       effect         se          t          p       LLCI       ULCI
##       0.0782     0.1013     0.7724     0.4405    -0.1212     0.2777
## 
## Indirect effect(s) of X on Y:
##                Effect     BootSE   BootLLCI   BootULCI
## upbringing     0.0660     0.0796    -0.0832     0.2256
## 
## Normal theory test for indirect effect(s):
##                Effect         se          Z          p
## upbringing     0.0660     0.0729     0.9055     0.3652
## 
## ******************** ANALYSIS NOTES AND ERRORS ************************ 
## 
## Level of confidence for all confidence intervals in output: 95
## 
## Number of bootstraps for percentile bootstrap confidence intervals: 10000

Plot

parallel

  • sympathy
  • SE
  • SFC

Mediation analysis: emo_sec_check -> parallel -> punishment

Process Report

## 
## ********************* PROCESS for R Version 4.1.1 ********************* 
##  
##            Written by Andrew F. Hayes, Ph.D.  www.afhayes.com              
##    Documentation available in Hayes (2022). www.guilford.com/p/hayes3   
##  
## *********************************************************************** 
##                      
## Model : 4            
##     Y : punishment   
##     X : emo_sec_check
##    M1 : sympathy     
##    M2 : SE           
##    M3 : SFC          
## 
## Sample size: 275
## 
## Custom seed: 1234
## 
## 
## *********************************************************************** 
## Outcome Variable: sympathy
## 
## Model Summary: 
##            R       R-sq        MSE          F        df1        df2          p
##       0.4593     0.2109     2.3359    72.9835     1.0000   273.0000     0.0000
## 
## Model: 
##                    coeff         se          t          p       LLCI       ULCI
## constant          3.2029     0.1341    23.8872     0.0000     2.9389     3.4669
## emo_sec_check    -0.2983     0.0349    -8.5430     0.0000    -0.3671    -0.2296
## 
## *********************************************************************** 
## Outcome Variable: SE
## 
## Model Summary: 
##            R       R-sq        MSE          F        df1        df2          p
##       0.2105     0.0443     1.6855    12.6533     1.0000   273.0000     0.0004
## 
## Model: 
##                    coeff         se          t          p       LLCI       ULCI
## constant          3.7166     0.1139    32.6308     0.0000     3.4924     3.9409
## emo_sec_check     0.1055     0.0297     3.5571     0.0004     0.0471     0.1639
## 
## *********************************************************************** 
## Outcome Variable: SFC
## 
## Model Summary: 
##            R       R-sq        MSE          F        df1        df2          p
##       0.5567     0.3100     0.9896   122.6345     1.0000   273.0000     0.0000
## 
## Model: 
##                    coeff         se          t          p       LLCI       ULCI
## constant          3.1244     0.0873    35.7994     0.0000     2.9526     3.2962
## emo_sec_check     0.2517     0.0227    11.0740     0.0000     0.2069     0.2964
## 
## *********************************************************************** 
## Outcome Variable: punishment
## 
## Model Summary: 
##            R       R-sq        MSE          F        df1        df2          p
##       0.3954     0.1563     8.2605    12.5088     4.0000   270.0000     0.0000
## 
## Model: 
##                    coeff         se          t          p       LLCI       ULCI
## constant          4.3692     1.0219     4.2753     0.0000     2.3572     6.3812
## emo_sec_check    -0.0718     0.0818    -0.8783     0.3806    -0.2328     0.0892
## sympathy         -0.4542     0.1317    -3.4488     0.0007    -0.7134    -0.1949
## SE                0.4652     0.1578     2.9479     0.0035     0.1545     0.7758
## SFC               0.1251     0.2048     0.6106     0.5419    -0.2782     0.5283
## 
## ************************ TOTAL EFFECT MODEL *************************** 
## Outcome Variable: punishment
## 
## Model Summary: 
##            R       R-sq        MSE          F        df1        df2          p
##       0.1228     0.0151     9.5377     4.1784     1.0000   273.0000     0.0419
## 
## Model: 
##                    coeff         se          t          p       LLCI       ULCI
## constant          5.0341     0.2709    18.5799     0.0000     4.5007     5.5675
## emo_sec_check     0.1442     0.0706     2.0441     0.0419     0.0053     0.2831
## 
## *********************************************************************** 
## Bootstrapping in progress. Please wait.
## 
## ************ TOTAL, DIRECT, AND INDIRECT EFFECTS OF X ON Y ************
## 
## Total effect of X on Y:
##       effect         se          t          p       LLCI       ULCI
##       0.1442     0.0706     2.0441     0.0419     0.0053     0.2831
## 
## Direct effect of X on Y:
##       effect         se          t          p       LLCI       ULCI
##      -0.0718     0.0818    -0.8783     0.3806    -0.2328     0.0892
## 
## Indirect effect(s) of X on Y:
##              Effect     BootSE   BootLLCI   BootULCI
## TOTAL        0.2160     0.0526     0.1152     0.3228
## sympathy     0.1355     0.0455     0.0518     0.2306
## SE           0.0491     0.0267     0.0097     0.1134
## SFC          0.0315     0.0471    -0.0635     0.1226
## 
## Normal theory test for indirect effect(s):
##              Effect         se          Z          p
## sympathy     0.1355     0.0426     3.1794     0.0015
## SE           0.0491     0.0221     2.2184     0.0265
## SFC          0.0315     0.0518     0.6073     0.5437
## 
## ******************** ANALYSIS NOTES AND ERRORS ************************ 
## 
## Level of confidence for all confidence intervals in output: 95
## 
## Number of bootstraps for percentile bootstrap confidence intervals: 10000