Back to Index

## 
## ********************* PROCESS for R Version 4.1.1 ********************* 
##  
##            Written by Andrew F. Hayes, Ph.D.  www.afhayes.com              
##    Documentation available in Hayes (2022). www.guilford.com/p/hayes3   
##  
## *********************************************************************** 
##  
## PROCESS is now ready for use.
## Copyright 2022 by Andrew F. Hayes ALL RIGHTS RESERVED
## Workshop schedule at http://haskayne.ucalgary.ca/CCRAM
## 

X1: poor-middle_class

X2: poor-rich

Condition (X1 or X2) as antecedent variable.

Direct Effects

## 
## Call:
## lm(formula = blame_post ~ condition_1, data = df)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -5.3814 -0.3814  0.6186  0.6703  0.7220 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  5.27795    0.09583  55.074   <2e-16 ***
## condition_1  0.05170    0.07394   0.699    0.485    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.046 on 298 degrees of freedom
## Multiple R-squared:  0.001638,   Adjusted R-squared:  -0.001712 
## F-statistic: 0.489 on 1 and 298 DF,  p-value: 0.4849

character

Mediation analysis: condition -> character -> blame_post

## 
## ********************* PROCESS for R Version 4.1.1 ********************* 
##  
##            Written by Andrew F. Hayes, Ph.D.  www.afhayes.com              
##    Documentation available in Hayes (2022). www.guilford.com/p/hayes3   
##  
## *********************************************************************** 
##                    
## Model : 4          
##     Y : blame_post 
##     X : condition_1
##     M : character  
## 
## Sample size: 300
## 
## Custom seed: 1234
## 
## Coding of categorical X variable for analysis: 
##   condition_1         X1         X2
##        0.0000     0.0000     0.0000
##        1.0000     1.0000     0.0000
##        2.0000     0.0000     1.0000
## 
## *********************************************************************** 
## Outcome Variable: character
## 
## Model Summary: 
##            R       R-sq        MSE          F        df1        df2          p
##       0.1679     0.0282     1.5555     4.3099     2.0000   297.0000     0.0143
## 
## Model: 
##               coeff         se          t          p       LLCI       ULCI
## constant     2.3535     0.1253    18.7759     0.0000     2.1069     2.6002
## X1          -0.1435     0.1768    -0.8117     0.4176    -0.4915     0.2045
## X2          -0.5021     0.1764    -2.8463     0.0047    -0.8492    -0.1549
## 
## *********************************************************************** 
## Outcome Variable: blame_post
## 
## Model Summary: 
##            R       R-sq        MSE          F        df1        df2          p
##       0.2825     0.0798     1.0145     8.5582     3.0000   296.0000     0.0000
## 
## Model: 
##                coeff         se          t          p       LLCI       ULCI
## constant      5.8631     0.1497    39.1651     0.0000     5.5685     6.1577
## X1           -0.1162     0.1430    -0.8125     0.4172    -0.3975     0.1652
## X2           -0.0126     0.1444    -0.0876     0.9303    -0.2968     0.2715
## character    -0.2294     0.0469    -4.8948     0.0000    -0.3216    -0.1371
## 
## ************************ TOTAL EFFECT MODEL *************************** 
## Outcome Variable: blame_post
## 
## Model Summary: 
##            R       R-sq        MSE          F        df1        df2          p
##       0.0730     0.0053     1.0929     0.7962     2.0000   297.0000     0.4520
## 
## Model: 
##               coeff         se          t          p       LLCI       ULCI
## constant     5.3232     0.1051    50.6645     0.0000     5.1165     5.5300
## X1          -0.0832     0.1482    -0.5616     0.5748    -0.3749     0.2085
## X2           0.1025     0.1479     0.6933     0.4886    -0.1885     0.3935
## 
## *********************************************************************** 
## Bootstrapping in progress. Please wait.
## 
## ************ TOTAL, DIRECT, AND INDIRECT EFFECTS OF X ON Y ************
## 
## Relative total effects of X on Y:
##        effect         se          t          p       LLCI       ULCI
## X1    -0.0832     0.1482    -0.5616     0.5748    -0.3749     0.2085
## X2     0.1025     0.1479     0.6933     0.4886    -0.1885     0.3935
## 
## Omnibus test of total effect of X on Y:
##      R2-chng          F        df1        df2          p
##       0.0053     0.7962     2.0000   297.0000     0.4520
## ----------
## 
## Relative direct effects of X on Y:
##        effect         se          t          p       LLCI       ULCI
## X1    -0.1162     0.1430    -0.8125     0.4172    -0.3975     0.1652
## X2    -0.0126     0.1444    -0.0876     0.9303    -0.2968     0.2715
## 
## Omnibus test of direct effect of X on Y:
##      R2-chng          F        df1        df2          p
##       0.0025     0.3996     2.0000   296.0000     0.6709
## 
## ----------
## 
## Relative indirect effects of X on Y:
## 
## condition_1    ->    character    ->    blame_post
## 
##        Effect     BootSE   BootLLCI   BootULCI
## X1     0.0329     0.0430    -0.0460     0.1250
## X2     0.1152     0.0520     0.0300     0.2341
## 
##    Normal theory test for relative indirect effects:
##        Effect         se          Z          p
## X1     0.0329     0.0419     0.7850     0.4324
## X2     0.1152     0.0475     2.4230     0.0154
## 
## ******************** ANALYSIS NOTES AND ERRORS ************************ 
## 
## Level of confidence for all confidence intervals in output: 95
## 
## Number of bootstraps for percentile bootstrap confidence intervals: 10000

wrongness

Mediation analysis: condition -> wrongness -> blame_post

## 
## ********************* PROCESS for R Version 4.1.1 ********************* 
##  
##            Written by Andrew F. Hayes, Ph.D.  www.afhayes.com              
##    Documentation available in Hayes (2022). www.guilford.com/p/hayes3   
##  
## *********************************************************************** 
##                    
## Model : 4          
##     Y : blame_post 
##     X : condition_1
##     M : wrongness  
## 
## Sample size: 300
## 
## Custom seed: 1234
## 
## Coding of categorical X variable for analysis: 
##   condition_1         X1         X2
##        0.0000     0.0000     0.0000
##        1.0000     1.0000     0.0000
##        2.0000     0.0000     1.0000
## 
## *********************************************************************** 
## Outcome Variable: wrongness
## 
## Model Summary: 
##            R       R-sq        MSE          F        df1        df2          p
##       0.1004     0.0101     0.5830     1.5120     2.0000   297.0000     0.2222
## 
## Model: 
##               coeff         se          t          p       LLCI       ULCI
## constant     5.5758     0.0767    72.6581     0.0000     5.4247     5.7268
## X1           0.1442     0.1083     1.3324     0.1837    -0.0688     0.3573
## X2           0.1767     0.1080     1.6365     0.1028    -0.0358     0.3892
## 
## *********************************************************************** 
## Outcome Variable: blame_post
## 
## Model Summary: 
##            R       R-sq        MSE          F        df1        df2          p
##       0.5015     0.2515     0.8252    33.1524     3.0000   296.0000     0.0000
## 
## Model: 
##                coeff         se          t          p       LLCI       ULCI
## constant      1.5254     0.3956     3.8561     0.0001     0.7469     2.3040
## X1           -0.1815     0.1292    -1.4049     0.1611    -0.4357     0.0727
## X2           -0.0179     0.1291    -0.1384     0.8900    -0.2718     0.2361
## wrongness     0.6811     0.0690     9.8665     0.0000     0.5453     0.8170
## 
## ************************ TOTAL EFFECT MODEL *************************** 
## Outcome Variable: blame_post
## 
## Model Summary: 
##            R       R-sq        MSE          F        df1        df2          p
##       0.0730     0.0053     1.0929     0.7962     2.0000   297.0000     0.4520
## 
## Model: 
##               coeff         se          t          p       LLCI       ULCI
## constant     5.3232     0.1051    50.6645     0.0000     5.1165     5.5300
## X1          -0.0832     0.1482    -0.5616     0.5748    -0.3749     0.2085
## X2           0.1025     0.1479     0.6933     0.4886    -0.1885     0.3935
## 
## *********************************************************************** 
## Bootstrapping in progress. Please wait.
## 
## ************ TOTAL, DIRECT, AND INDIRECT EFFECTS OF X ON Y ************
## 
## Relative total effects of X on Y:
##        effect         se          t          p       LLCI       ULCI
## X1    -0.0832     0.1482    -0.5616     0.5748    -0.3749     0.2085
## X2     0.1025     0.1479     0.6933     0.4886    -0.1885     0.3935
## 
## Omnibus test of total effect of X on Y:
##      R2-chng          F        df1        df2          p
##       0.0053     0.7962     2.0000   297.0000     0.4520
## ----------
## 
## Relative direct effects of X on Y:
##        effect         se          t          p       LLCI       ULCI
## X1    -0.1815     0.1292    -1.4049     0.1611    -0.4357     0.0727
## X2    -0.0179     0.1291    -0.1384     0.8900    -0.2718     0.2361
## 
## Omnibus test of direct effect of X on Y:
##      R2-chng          F        df1        df2          p
##       0.0061     1.2090     2.0000   296.0000     0.3000
## 
## ----------
## 
## Relative indirect effects of X on Y:
## 
## condition_1    ->    wrongness    ->    blame_post
## 
##        Effect     BootSE   BootLLCI   BootULCI
## X1     0.0982     0.0733    -0.0403     0.2495
## X2     0.1204     0.0749    -0.0363     0.2607
## 
##    Normal theory test for relative indirect effects:
##        Effect         se          Z          p
## X1     0.0982     0.0748     1.3138     0.1889
## X2     0.1204     0.0749     1.6064     0.1082
## 
## ******************** ANALYSIS NOTES AND ERRORS ************************ 
## 
## Level of confidence for all confidence intervals in output: 95
## 
## Number of bootstraps for percentile bootstrap confidence intervals: 10000

justification

Mediation analysis: condition -> justification -> blame_post

## 
## ********************* PROCESS for R Version 4.1.1 ********************* 
##  
##            Written by Andrew F. Hayes, Ph.D.  www.afhayes.com              
##    Documentation available in Hayes (2022). www.guilford.com/p/hayes3   
##  
## *********************************************************************** 
##                      
## Model : 4            
##     Y : blame_post   
##     X : condition_1  
##     M : justification
## 
## Sample size: 300
## 
## Custom seed: 1234
## 
## Coding of categorical X variable for analysis: 
##   condition_1         X1         X2
##        0.0000     0.0000     0.0000
##        1.0000     1.0000     0.0000
##        2.0000     0.0000     1.0000
## 
## *********************************************************************** 
## Outcome Variable: justification
## 
## Model Summary: 
##            R       R-sq        MSE          F        df1        df2          p
##       0.0920     0.0085     1.3913     1.2681     2.0000   297.0000     0.2829
## 
## Model: 
##               coeff         se          t          p       LLCI       ULCI
## constant     0.6465     0.1185     5.4532     0.0000     0.4132     0.8798
## X1           0.0335     0.1672     0.2005     0.8412    -0.2956     0.3626
## X2          -0.2108     0.1668    -1.2638     0.2073    -0.5391     0.1175
## 
## *********************************************************************** 
## Outcome Variable: blame_post
## 
## Model Summary: 
##            R       R-sq        MSE          F        df1        df2          p
##       0.5623     0.3162     0.7539    45.6240     3.0000   296.0000     0.0000
## 
## Model: 
##                    coeff         se          t          p       LLCI       ULCI
## constant          5.6435     0.0915    61.6594     0.0000     5.4634     5.8237
## X1               -0.0666     0.1231    -0.5411     0.5888    -0.3089     0.1757
## X2               -0.0019     0.1231    -0.0158     0.9874    -0.2443     0.2404
## justification    -0.4955     0.0427   -11.6001     0.0000    -0.5795    -0.4114
## 
## ************************ TOTAL EFFECT MODEL *************************** 
## Outcome Variable: blame_post
## 
## Model Summary: 
##            R       R-sq        MSE          F        df1        df2          p
##       0.0730     0.0053     1.0929     0.7962     2.0000   297.0000     0.4520
## 
## Model: 
##               coeff         se          t          p       LLCI       ULCI
## constant     5.3232     0.1051    50.6645     0.0000     5.1165     5.5300
## X1          -0.0832     0.1482    -0.5616     0.5748    -0.3749     0.2085
## X2           0.1025     0.1479     0.6933     0.4886    -0.1885     0.3935
## 
## *********************************************************************** 
## Bootstrapping in progress. Please wait.
## 
## ************ TOTAL, DIRECT, AND INDIRECT EFFECTS OF X ON Y ************
## 
## Relative total effects of X on Y:
##        effect         se          t          p       LLCI       ULCI
## X1    -0.0832     0.1482    -0.5616     0.5748    -0.3749     0.2085
## X2     0.1025     0.1479     0.6933     0.4886    -0.1885     0.3935
## 
## Omnibus test of total effect of X on Y:
##      R2-chng          F        df1        df2          p
##       0.0053     0.7962     2.0000   297.0000     0.4520
## ----------
## 
## Relative direct effects of X on Y:
##        effect         se          t          p       LLCI       ULCI
## X1    -0.0666     0.1231    -0.5411     0.5888    -0.3089     0.1757
## X2    -0.0019     0.1231    -0.0158     0.9874    -0.2443     0.2404
## 
## Omnibus test of direct effect of X on Y:
##      R2-chng          F        df1        df2          p
##       0.0009     0.1900     2.0000   296.0000     0.8270
## 
## ----------
## 
## Relative indirect effects of X on Y:
## 
## condition_1    ->    justification    ->    blame_post
## 
##        Effect     BootSE   BootLLCI   BootULCI
## X1    -0.0166     0.0889    -0.1891     0.1644
## X2     0.1045     0.0767    -0.0512     0.2503
## 
##    Normal theory test for relative indirect effects:
##        Effect         se          Z          p
## X1    -0.0166     0.0832    -0.1998     0.8417
## X2     0.1045     0.0834     1.2517     0.2107
## 
## ******************** ANALYSIS NOTES AND ERRORS ************************ 
## 
## Level of confidence for all confidence intervals in output: 95
## 
## Number of bootstraps for percentile bootstrap confidence intervals: 10000

guilt

Mediation analysis: condition -> guilt -> blame_post

## 
## ********************* PROCESS for R Version 4.1.1 ********************* 
##  
##            Written by Andrew F. Hayes, Ph.D.  www.afhayes.com              
##    Documentation available in Hayes (2022). www.guilford.com/p/hayes3   
##  
## *********************************************************************** 
##                    
## Model : 4          
##     Y : blame_post 
##     X : condition_1
##     M : guilt      
## 
## Sample size: 300
## 
## Custom seed: 1234
## 
## Coding of categorical X variable for analysis: 
##   condition_1         X1         X2
##        0.0000     0.0000     0.0000
##        1.0000     1.0000     0.0000
##        2.0000     0.0000     1.0000
## 
## *********************************************************************** 
## Outcome Variable: guilt
## 
## Model Summary: 
##            R       R-sq        MSE          F        df1        df2          p
##       0.2391     0.0572     2.7366     9.0065     2.0000   297.0000     0.0002
## 
## Model: 
##               coeff         se          t          p       LLCI       ULCI
## constant     4.2525     0.1663    25.5773     0.0000     3.9253     4.5797
## X1           0.2175     0.2345     0.9272     0.3546    -0.2441     0.6790
## X2          -0.7278     0.2340    -3.1106     0.0020    -1.1882    -0.2673
## 
## *********************************************************************** 
## Outcome Variable: blame_post
## 
## Model Summary: 
##            R       R-sq        MSE          F        df1        df2          p
##       0.0751     0.0056     1.0962     0.5600     3.0000   296.0000     0.6418
## 
## Model: 
##               coeff         se          t          p       LLCI       ULCI
## constant     5.2758     0.1883    28.0150     0.0000     4.9051     5.6464
## X1          -0.0857     0.1487    -0.5762     0.5649    -0.3782     0.2069
## X2           0.1106     0.1505     0.7353     0.4628    -0.1855     0.4068
## guilt        0.0112     0.0367     0.3040     0.7613    -0.0611     0.0834
## 
## ************************ TOTAL EFFECT MODEL *************************** 
## Outcome Variable: blame_post
## 
## Model Summary: 
##            R       R-sq        MSE          F        df1        df2          p
##       0.0730     0.0053     1.0929     0.7962     2.0000   297.0000     0.4520
## 
## Model: 
##               coeff         se          t          p       LLCI       ULCI
## constant     5.3232     0.1051    50.6645     0.0000     5.1165     5.5300
## X1          -0.0832     0.1482    -0.5616     0.5748    -0.3749     0.2085
## X2           0.1025     0.1479     0.6933     0.4886    -0.1885     0.3935
## 
## *********************************************************************** 
## Bootstrapping in progress. Please wait.
## 
## ************ TOTAL, DIRECT, AND INDIRECT EFFECTS OF X ON Y ************
## 
## Relative total effects of X on Y:
##        effect         se          t          p       LLCI       ULCI
## X1    -0.0832     0.1482    -0.5616     0.5748    -0.3749     0.2085
## X2     0.1025     0.1479     0.6933     0.4886    -0.1885     0.3935
## 
## Omnibus test of total effect of X on Y:
##      R2-chng          F        df1        df2          p
##       0.0053     0.7962     2.0000   297.0000     0.4520
## ----------
## 
## Relative direct effects of X on Y:
##        effect         se          t          p       LLCI       ULCI
## X1    -0.0857     0.1487    -0.5762     0.5649    -0.3782     0.2069
## X2     0.1106     0.1505     0.7353     0.4628    -0.1855     0.4068
## 
## Omnibus test of direct effect of X on Y:
##      R2-chng          F        df1        df2          p
##       0.0056     0.8400     2.0000   296.0000     0.4327
## 
## ----------
## 
## Relative indirect effects of X on Y:
## 
## condition_1    ->    guilt    ->    blame_post
## 
##        Effect     BootSE   BootLLCI   BootULCI
## X1     0.0024     0.0151    -0.0266     0.0390
## X2    -0.0081     0.0362    -0.0880     0.0617
## 
##    Normal theory test for relative indirect effects:
##        Effect         se          Z          p
## X1     0.0024     0.0120     0.2018     0.8401
## X2    -0.0081     0.0282    -0.2882     0.7732
## 
## ******************** ANALYSIS NOTES AND ERRORS ************************ 
## 
## Level of confidence for all confidence intervals in output: 95
## 
## Number of bootstraps for percentile bootstrap confidence intervals: 10000

SFC

Mediation analysis: condition -> SFC -> blame_post

## 
## ********************* PROCESS for R Version 4.1.1 ********************* 
##  
##            Written by Andrew F. Hayes, Ph.D.  www.afhayes.com              
##    Documentation available in Hayes (2022). www.guilford.com/p/hayes3   
##  
## *********************************************************************** 
##                    
## Model : 4          
##     Y : blame_post 
##     X : condition_1
##     M : SFC        
## 
## Sample size: 300
## 
## Custom seed: 1234
## 
## Coding of categorical X variable for analysis: 
##   condition_1         X1         X2
##        0.0000     0.0000     0.0000
##        1.0000     1.0000     0.0000
##        2.0000     0.0000     1.0000
## 
## *********************************************************************** 
## Outcome Variable: SFC
## 
## Model Summary: 
##            R       R-sq        MSE          F        df1        df2          p
##       0.1406     0.0198     2.1959     2.9966     2.0000   297.0000     0.0515
## 
## Model: 
##               coeff         se          t          p       LLCI       ULCI
## constant     2.9899     0.1489    20.0755     0.0000     2.6968     3.2830
## X1           0.4701     0.2101     2.2376     0.0260     0.0566     0.8836
## X2           0.4160     0.2096     1.9851     0.0480     0.0036     0.8285
## 
## *********************************************************************** 
## Outcome Variable: blame_post
## 
## Model Summary: 
##            R       R-sq        MSE          F        df1        df2          p
##       0.1661     0.0276     1.0720     2.7996     3.0000   296.0000     0.0403
## 
## Model: 
##               coeff         se          t          p       LLCI       ULCI
## constant     5.0077     0.1598    31.3451     0.0000     4.6933     5.3221
## X1          -0.1328     0.1480    -0.8974     0.3702    -0.4242     0.1585
## X2           0.0586     0.1474     0.3976     0.6912    -0.2315     0.3487
## SFC          0.1055     0.0405     2.6030     0.0097     0.0257     0.1853
## 
## ************************ TOTAL EFFECT MODEL *************************** 
## Outcome Variable: blame_post
## 
## Model Summary: 
##            R       R-sq        MSE          F        df1        df2          p
##       0.0730     0.0053     1.0929     0.7962     2.0000   297.0000     0.4520
## 
## Model: 
##               coeff         se          t          p       LLCI       ULCI
## constant     5.3232     0.1051    50.6645     0.0000     5.1165     5.5300
## X1          -0.0832     0.1482    -0.5616     0.5748    -0.3749     0.2085
## X2           0.1025     0.1479     0.6933     0.4886    -0.1885     0.3935
## 
## *********************************************************************** 
## Bootstrapping in progress. Please wait.
## 
## ************ TOTAL, DIRECT, AND INDIRECT EFFECTS OF X ON Y ************
## 
## Relative total effects of X on Y:
##        effect         se          t          p       LLCI       ULCI
## X1    -0.0832     0.1482    -0.5616     0.5748    -0.3749     0.2085
## X2     0.1025     0.1479     0.6933     0.4886    -0.1885     0.3935
## 
## Omnibus test of total effect of X on Y:
##      R2-chng          F        df1        df2          p
##       0.0053     0.7962     2.0000   297.0000     0.4520
## ----------
## 
## Relative direct effects of X on Y:
##        effect         se          t          p       LLCI       ULCI
## X1    -0.1328     0.1480    -0.8974     0.3702    -0.4242     0.1585
## X2     0.0586     0.1474     0.3976     0.6912    -0.2315     0.3487
## 
## Omnibus test of direct effect of X on Y:
##      R2-chng          F        df1        df2          p
##       0.0059     0.8987     2.0000   296.0000     0.4082
## 
## ----------
## 
## Relative indirect effects of X on Y:
## 
## condition_1    ->    SFC    ->    blame_post
## 
##        Effect     BootSE   BootLLCI   BootULCI
## X1     0.0496     0.0328    -0.0004     0.1237
## X2     0.0439     0.0311    -0.0035     0.1163
## 
##    Normal theory test for relative indirect effects:
##        Effect         se          Z          p
## X1     0.0496     0.0305     1.6291     0.1033
## X2     0.0439     0.0291     1.5096     0.1311
## 
## ******************** ANALYSIS NOTES AND ERRORS ************************ 
## 
## Level of confidence for all confidence intervals in output: 95
## 
## Number of bootstraps for percentile bootstrap confidence intervals: 10000