Back to Index

## 
## ********************* PROCESS for R Version 4.1.1 ********************* 
##  
##            Written by Andrew F. Hayes, Ph.D.  www.afhayes.com              
##    Documentation available in Hayes (2022). www.guilford.com/p/hayes3   
##  
## *********************************************************************** 
##  
## PROCESS is now ready for use.
## Copyright 2022 by Andrew F. Hayes ALL RIGHTS RESERVED
## Workshop schedule at http://haskayne.ucalgary.ca/CCRAM
## 

X1: poor-middle_class

X2: poor-rich

Condition (X1 or X2) as antecedent variable.

Direct Effects

## 
## Call:
## lm(formula = punish_post ~ condition_1, data = df)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -4.8456 -0.8456  0.0242  1.0242  1.1544 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  4.84556    0.09811  49.390   <2e-16 ***
## condition_1  0.13024    0.07569   1.721   0.0863 .  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.07 on 298 degrees of freedom
## Multiple R-squared:  0.009838,   Adjusted R-squared:  0.006515 
## F-statistic: 2.961 on 1 and 298 DF,  p-value: 0.08635

character

Mediation analysis: condition -> character -> punish_post

## 
## ********************* PROCESS for R Version 4.1.1 ********************* 
##  
##            Written by Andrew F. Hayes, Ph.D.  www.afhayes.com              
##    Documentation available in Hayes (2022). www.guilford.com/p/hayes3   
##  
## *********************************************************************** 
##                    
## Model : 4          
##     Y : punish_post
##     X : condition_1
##     M : character  
## 
## Sample size: 300
## 
## Custom seed: 1234
## 
## Coding of categorical X variable for analysis: 
##   condition_1         X1         X2
##        0.0000     0.0000     0.0000
##        1.0000     1.0000     0.0000
##        2.0000     0.0000     1.0000
## 
## *********************************************************************** 
## Outcome Variable: character
## 
## Model Summary: 
##            R       R-sq        MSE          F        df1        df2          p
##       0.1679     0.0282     1.5555     4.3099     2.0000   297.0000     0.0143
## 
## Model: 
##               coeff         se          t          p       LLCI       ULCI
## constant     2.3535     0.1253    18.7759     0.0000     2.1069     2.6002
## X1          -0.1435     0.1768    -0.8117     0.4176    -0.4915     0.2045
## X2          -0.5021     0.1764    -2.8463     0.0047    -0.8492    -0.1549
## 
## *********************************************************************** 
## Outcome Variable: punish_post
## 
## Model Summary: 
##            R       R-sq        MSE          F        df1        df2          p
##       0.4073     0.1659     0.9717    19.6286     3.0000   296.0000     0.0000
## 
## Model: 
##                coeff         se          t          p       LLCI       ULCI
## constant      5.6415     0.1465    38.5059     0.0000     5.3532     5.9298
## X1            0.1026     0.1399     0.7336     0.4638    -0.1727     0.3780
## X2            0.0893     0.1413     0.6320     0.5278    -0.1888     0.3674
## character    -0.3412     0.0459    -7.4407     0.0000    -0.4315    -0.2510
## 
## ************************ TOTAL EFFECT MODEL *************************** 
## Outcome Variable: punish_post
## 
## Model Summary: 
##            R       R-sq        MSE          F        df1        df2          p
##       0.0996     0.0099     1.1495     1.4887     2.0000   297.0000     0.2273
## 
## Model: 
##               coeff         se          t          p       LLCI       ULCI
## constant     4.8384     0.1078    44.9009     0.0000     4.6263     5.0504
## X1           0.1516     0.1520     0.9974     0.3194    -0.1475     0.4508
## X2           0.2606     0.1516     1.7188     0.0867    -0.0378     0.5590
## 
## *********************************************************************** 
## Bootstrapping in progress. Please wait.
## 
## ************ TOTAL, DIRECT, AND INDIRECT EFFECTS OF X ON Y ************
## 
## Relative total effects of X on Y:
##        effect         se          t          p       LLCI       ULCI
## X1     0.1516     0.1520     0.9974     0.3194    -0.1475     0.4508
## X2     0.2606     0.1516     1.7188     0.0867    -0.0378     0.5590
## 
## Omnibus test of total effect of X on Y:
##      R2-chng          F        df1        df2          p
##       0.0099     1.4887     2.0000   297.0000     0.2273
## ----------
## 
## Relative direct effects of X on Y:
##        effect         se          t          p       LLCI       ULCI
## X1     0.1026     0.1399     0.7336     0.4638    -0.1727     0.3780
## X2     0.0893     0.1413     0.6320     0.5278    -0.1888     0.3674
## 
## Omnibus test of direct effect of X on Y:
##      R2-chng          F        df1        df2          p
##       0.0018     0.3152     2.0000   296.0000     0.7299
## 
## ----------
## 
## Relative indirect effects of X on Y:
## 
## condition_1    ->    character    ->    punish_post
## 
##        Effect     BootSE   BootLLCI   BootULCI
## X1     0.0490     0.0617    -0.0680     0.1740
## X2     0.1713     0.0685     0.0501     0.3189
## 
##    Normal theory test for relative indirect effects:
##        Effect         se          Z          p
## X1     0.0490     0.0612     0.7998     0.4238
## X2     0.1713     0.0650     2.6377     0.0083
## 
## ******************** ANALYSIS NOTES AND ERRORS ************************ 
## 
## Level of confidence for all confidence intervals in output: 95
## 
## Number of bootstraps for percentile bootstrap confidence intervals: 10000

wrongness

Mediation analysis: condition -> wrongness -> punish_post

## 
## ********************* PROCESS for R Version 4.1.1 ********************* 
##  
##            Written by Andrew F. Hayes, Ph.D.  www.afhayes.com              
##    Documentation available in Hayes (2022). www.guilford.com/p/hayes3   
##  
## *********************************************************************** 
##                    
## Model : 4          
##     Y : punish_post
##     X : condition_1
##     M : wrongness  
## 
## Sample size: 300
## 
## Custom seed: 1234
## 
## Coding of categorical X variable for analysis: 
##   condition_1         X1         X2
##        0.0000     0.0000     0.0000
##        1.0000     1.0000     0.0000
##        2.0000     0.0000     1.0000
## 
## *********************************************************************** 
## Outcome Variable: wrongness
## 
## Model Summary: 
##            R       R-sq        MSE          F        df1        df2          p
##       0.1004     0.0101     0.5830     1.5120     2.0000   297.0000     0.2222
## 
## Model: 
##               coeff         se          t          p       LLCI       ULCI
## constant     5.5758     0.0767    72.6581     0.0000     5.4247     5.7268
## X1           0.1442     0.1083     1.3324     0.1837    -0.0688     0.3573
## X2           0.1767     0.1080     1.6365     0.1028    -0.0358     0.3892
## 
## *********************************************************************** 
## Outcome Variable: punish_post
## 
## Model Summary: 
##            R       R-sq        MSE          F        df1        df2          p
##       0.3713     0.1379     1.0044    15.7797     3.0000   296.0000     0.0000
## 
## Model: 
##                coeff         se          t          p       LLCI       ULCI
## constant      2.0238     0.4364     4.6370     0.0000     1.1649     2.8827
## X1            0.0788     0.1425     0.5530     0.5807    -0.2017     0.3593
## X2            0.1714     0.1424     1.2040     0.2295    -0.1088     0.4516
## wrongness     0.5048     0.0762     6.6281     0.0000     0.3549     0.6547
## 
## ************************ TOTAL EFFECT MODEL *************************** 
## Outcome Variable: punish_post
## 
## Model Summary: 
##            R       R-sq        MSE          F        df1        df2          p
##       0.0996     0.0099     1.1495     1.4887     2.0000   297.0000     0.2273
## 
## Model: 
##               coeff         se          t          p       LLCI       ULCI
## constant     4.8384     0.1078    44.9009     0.0000     4.6263     5.0504
## X1           0.1516     0.1520     0.9974     0.3194    -0.1475     0.4508
## X2           0.2606     0.1516     1.7188     0.0867    -0.0378     0.5590
## 
## *********************************************************************** 
## Bootstrapping in progress. Please wait.
## 
## ************ TOTAL, DIRECT, AND INDIRECT EFFECTS OF X ON Y ************
## 
## Relative total effects of X on Y:
##        effect         se          t          p       LLCI       ULCI
## X1     0.1516     0.1520     0.9974     0.3194    -0.1475     0.4508
## X2     0.2606     0.1516     1.7188     0.0867    -0.0378     0.5590
## 
## Omnibus test of total effect of X on Y:
##      R2-chng          F        df1        df2          p
##       0.0099     1.4887     2.0000   297.0000     0.2273
## ----------
## 
## Relative direct effects of X on Y:
##        effect         se          t          p       LLCI       ULCI
## X1     0.0788     0.1425     0.5530     0.5807    -0.2017     0.3593
## X2     0.1714     0.1424     1.2040     0.2295    -0.1088     0.4516
## 
## Omnibus test of direct effect of X on Y:
##      R2-chng          F        df1        df2          p
##       0.0042     0.7271     2.0000   296.0000     0.4842
## 
## ----------
## 
## Relative indirect effects of X on Y:
## 
## condition_1    ->    wrongness    ->    punish_post
## 
##        Effect     BootSE   BootLLCI   BootULCI
## X1     0.0728     0.0620    -0.0302     0.2152
## X2     0.0892     0.0720    -0.0178     0.2554
## 
##    Normal theory test for relative indirect effects:
##        Effect         se          Z          p
## X1     0.0728     0.0563     1.2922     0.1963
## X2     0.0892     0.0567     1.5720     0.1160
## 
## ******************** ANALYSIS NOTES AND ERRORS ************************ 
## 
## Level of confidence for all confidence intervals in output: 95
## 
## Number of bootstraps for percentile bootstrap confidence intervals: 10000

justification

Mediation analysis: condition -> justification -> punish_post

## 
## ********************* PROCESS for R Version 4.1.1 ********************* 
##  
##            Written by Andrew F. Hayes, Ph.D.  www.afhayes.com              
##    Documentation available in Hayes (2022). www.guilford.com/p/hayes3   
##  
## *********************************************************************** 
##                      
## Model : 4            
##     Y : punish_post  
##     X : condition_1  
##     M : justification
## 
## Sample size: 300
## 
## Custom seed: 1234
## 
## Coding of categorical X variable for analysis: 
##   condition_1         X1         X2
##        0.0000     0.0000     0.0000
##        1.0000     1.0000     0.0000
##        2.0000     0.0000     1.0000
## 
## *********************************************************************** 
## Outcome Variable: justification
## 
## Model Summary: 
##            R       R-sq        MSE          F        df1        df2          p
##       0.0920     0.0085     1.3913     1.2681     2.0000   297.0000     0.2829
## 
## Model: 
##               coeff         se          t          p       LLCI       ULCI
## constant     0.6465     0.1185     5.4532     0.0000     0.4132     0.8798
## X1           0.0335     0.1672     0.2005     0.8412    -0.2956     0.3626
## X2          -0.2108     0.1668    -1.2638     0.2073    -0.5391     0.1175
## 
## *********************************************************************** 
## Outcome Variable: punish_post
## 
## Model Summary: 
##            R       R-sq        MSE          F        df1        df2          p
##       0.4157     0.1728     0.9637    20.6081     3.0000   296.0000     0.0000
## 
## Model: 
##                    coeff         se          t          p       LLCI       ULCI
## constant          5.0767     0.1035    49.0576     0.0000     4.8730     5.2804
## X1                0.1640     0.1392     1.1781     0.2397    -0.1099     0.4379
## X2                0.1829     0.1392     1.3139     0.1899    -0.0911     0.4569
## justification    -0.3687     0.0483    -7.6337     0.0000    -0.4637    -0.2736
## 
## ************************ TOTAL EFFECT MODEL *************************** 
## Outcome Variable: punish_post
## 
## Model Summary: 
##            R       R-sq        MSE          F        df1        df2          p
##       0.0996     0.0099     1.1495     1.4887     2.0000   297.0000     0.2273
## 
## Model: 
##               coeff         se          t          p       LLCI       ULCI
## constant     4.8384     0.1078    44.9009     0.0000     4.6263     5.0504
## X1           0.1516     0.1520     0.9974     0.3194    -0.1475     0.4508
## X2           0.2606     0.1516     1.7188     0.0867    -0.0378     0.5590
## 
## *********************************************************************** 
## Bootstrapping in progress. Please wait.
## 
## ************ TOTAL, DIRECT, AND INDIRECT EFFECTS OF X ON Y ************
## 
## Relative total effects of X on Y:
##        effect         se          t          p       LLCI       ULCI
## X1     0.1516     0.1520     0.9974     0.3194    -0.1475     0.4508
## X2     0.2606     0.1516     1.7188     0.0867    -0.0378     0.5590
## 
## Omnibus test of total effect of X on Y:
##      R2-chng          F        df1        df2          p
##       0.0099     1.4887     2.0000   297.0000     0.2273
## ----------
## 
## Relative direct effects of X on Y:
##        effect         se          t          p       LLCI       ULCI
## X1     0.1640     0.1392     1.1781     0.2397    -0.1099     0.4379
## X2     0.1829     0.1392     1.3139     0.1899    -0.0911     0.4569
## 
## Omnibus test of direct effect of X on Y:
##      R2-chng          F        df1        df2          p
##       0.0058     1.0432     2.0000   296.0000     0.3536
## 
## ----------
## 
## Relative indirect effects of X on Y:
## 
## condition_1    ->    justification    ->    punish_post
## 
##        Effect     BootSE   BootLLCI   BootULCI
## X1    -0.0124     0.0673    -0.1406     0.1281
## X2     0.0777     0.0625    -0.0328     0.2097
## 
##    Normal theory test for relative indirect effects:
##        Effect         se          Z          p
## X1    -0.0124     0.0622    -0.1988     0.8424
## X2     0.0777     0.0629     1.2365     0.2163
## 
## ******************** ANALYSIS NOTES AND ERRORS ************************ 
## 
## Level of confidence for all confidence intervals in output: 95
## 
## Number of bootstraps for percentile bootstrap confidence intervals: 10000

Mediation analysis: manip_check -> justification -> blame_post

guilt

Mediation analysis: condition -> guilt -> punish_post

## 
## ********************* PROCESS for R Version 4.1.1 ********************* 
##  
##            Written by Andrew F. Hayes, Ph.D.  www.afhayes.com              
##    Documentation available in Hayes (2022). www.guilford.com/p/hayes3   
##  
## *********************************************************************** 
##                    
## Model : 4          
##     Y : punish_post
##     X : condition_1
##     M : guilt      
## 
## Sample size: 300
## 
## Custom seed: 1234
## 
## Coding of categorical X variable for analysis: 
##   condition_1         X1         X2
##        0.0000     0.0000     0.0000
##        1.0000     1.0000     0.0000
##        2.0000     0.0000     1.0000
## 
## *********************************************************************** 
## Outcome Variable: guilt
## 
## Model Summary: 
##            R       R-sq        MSE          F        df1        df2          p
##       0.2391     0.0572     2.7366     9.0065     2.0000   297.0000     0.0002
## 
## Model: 
##               coeff         se          t          p       LLCI       ULCI
## constant     4.2525     0.1663    25.5773     0.0000     3.9253     4.5797
## X1           0.2175     0.2345     0.9272     0.3546    -0.2441     0.6790
## X2          -0.7278     0.2340    -3.1106     0.0020    -1.1882    -0.2673
## 
## *********************************************************************** 
## Outcome Variable: punish_post
## 
## Model Summary: 
##            R       R-sq        MSE          F        df1        df2          p
##       0.1622     0.0263     1.1344     2.6646     3.0000   296.0000     0.0481
## 
## Model: 
##               coeff         se          t          p       LLCI       ULCI
## constant     5.1928     0.1916    27.1073     0.0000     4.8158     5.5698
## X1           0.1697     0.1512     1.1225     0.2626    -0.1279     0.4673
## X2           0.2000     0.1531     1.3065     0.1924    -0.1013     0.5012
## guilt       -0.0833     0.0374    -2.2308     0.0264    -0.1569    -0.0098
## 
## ************************ TOTAL EFFECT MODEL *************************** 
## Outcome Variable: punish_post
## 
## Model Summary: 
##            R       R-sq        MSE          F        df1        df2          p
##       0.0996     0.0099     1.1495     1.4887     2.0000   297.0000     0.2273
## 
## Model: 
##               coeff         se          t          p       LLCI       ULCI
## constant     4.8384     0.1078    44.9009     0.0000     4.6263     5.0504
## X1           0.1516     0.1520     0.9974     0.3194    -0.1475     0.4508
## X2           0.2606     0.1516     1.7188     0.0867    -0.0378     0.5590
## 
## *********************************************************************** 
## Bootstrapping in progress. Please wait.
## 
## ************ TOTAL, DIRECT, AND INDIRECT EFFECTS OF X ON Y ************
## 
## Relative total effects of X on Y:
##        effect         se          t          p       LLCI       ULCI
## X1     0.1516     0.1520     0.9974     0.3194    -0.1475     0.4508
## X2     0.2606     0.1516     1.7188     0.0867    -0.0378     0.5590
## 
## Omnibus test of total effect of X on Y:
##      R2-chng          F        df1        df2          p
##       0.0099     1.4887     2.0000   297.0000     0.2273
## ----------
## 
## Relative direct effects of X on Y:
##        effect         se          t          p       LLCI       ULCI
## X1     0.1697     0.1512     1.1225     0.2626    -0.1279     0.4673
## X2     0.2000     0.1531     1.3065     0.1924    -0.1013     0.5012
## 
## Omnibus test of direct effect of X on Y:
##      R2-chng          F        df1        df2          p
##       0.0066     1.0094     2.0000   296.0000     0.3657
## 
## ----------
## 
## Relative indirect effects of X on Y:
## 
## condition_1    ->    guilt    ->    punish_post
## 
##        Effect     BootSE   BootLLCI   BootULCI
## X1    -0.0181     0.0235    -0.0749     0.0201
## X2     0.0607     0.0406    -0.0026     0.1529
## 
##    Normal theory test for relative indirect effects:
##        Effect         se          Z          p
## X1    -0.0181     0.0229    -0.7911     0.4289
## X2     0.0607     0.0346     1.7540     0.0794
## 
## ******************** ANALYSIS NOTES AND ERRORS ************************ 
## 
## Level of confidence for all confidence intervals in output: 95
## 
## Number of bootstraps for percentile bootstrap confidence intervals: 10000

SFC

Mediation analysis: condition -> SFC -> punish_post

## 
## ********************* PROCESS for R Version 4.1.1 ********************* 
##  
##            Written by Andrew F. Hayes, Ph.D.  www.afhayes.com              
##    Documentation available in Hayes (2022). www.guilford.com/p/hayes3   
##  
## *********************************************************************** 
##                    
## Model : 4          
##     Y : punish_post
##     X : condition_1
##     M : SFC        
## 
## Sample size: 300
## 
## Custom seed: 1234
## 
## Coding of categorical X variable for analysis: 
##   condition_1         X1         X2
##        0.0000     0.0000     0.0000
##        1.0000     1.0000     0.0000
##        2.0000     0.0000     1.0000
## 
## *********************************************************************** 
## Outcome Variable: SFC
## 
## Model Summary: 
##            R       R-sq        MSE          F        df1        df2          p
##       0.1406     0.0198     2.1959     2.9966     2.0000   297.0000     0.0515
## 
## Model: 
##               coeff         se          t          p       LLCI       ULCI
## constant     2.9899     0.1489    20.0755     0.0000     2.6968     3.2830
## X1           0.4701     0.2101     2.2376     0.0260     0.0566     0.8836
## X2           0.4160     0.2096     1.9851     0.0480     0.0036     0.8285
## 
## *********************************************************************** 
## Outcome Variable: punish_post
## 
## Model Summary: 
##            R       R-sq        MSE          F        df1        df2          p
##       0.2921     0.0853     1.0656     9.2067     3.0000   296.0000     0.0000
## 
## Model: 
##               coeff         se          t          p       LLCI       ULCI
## constant     4.2413     0.1593    26.6287     0.0000     3.9279     4.5548
## X1           0.0577     0.1476     0.3912     0.6959    -0.2327     0.3482
## X2           0.1775     0.1470     1.2081     0.2280    -0.1117     0.4668
## SFC          0.1997     0.0404     4.9404     0.0000     0.1201     0.2792
## 
## ************************ TOTAL EFFECT MODEL *************************** 
## Outcome Variable: punish_post
## 
## Model Summary: 
##            R       R-sq        MSE          F        df1        df2          p
##       0.0996     0.0099     1.1495     1.4887     2.0000   297.0000     0.2273
## 
## Model: 
##               coeff         se          t          p       LLCI       ULCI
## constant     4.8384     0.1078    44.9009     0.0000     4.6263     5.0504
## X1           0.1516     0.1520     0.9974     0.3194    -0.1475     0.4508
## X2           0.2606     0.1516     1.7188     0.0867    -0.0378     0.5590
## 
## *********************************************************************** 
## Bootstrapping in progress. Please wait.
## 
## ************ TOTAL, DIRECT, AND INDIRECT EFFECTS OF X ON Y ************
## 
## Relative total effects of X on Y:
##        effect         se          t          p       LLCI       ULCI
## X1     0.1516     0.1520     0.9974     0.3194    -0.1475     0.4508
## X2     0.2606     0.1516     1.7188     0.0867    -0.0378     0.5590
## 
## Omnibus test of total effect of X on Y:
##      R2-chng          F        df1        df2          p
##       0.0099     1.4887     2.0000   297.0000     0.2273
## ----------
## 
## Relative direct effects of X on Y:
##        effect         se          t          p       LLCI       ULCI
## X1     0.0577     0.1476     0.3912     0.6959    -0.2327     0.3482
## X2     0.1775     0.1470     1.2081     0.2280    -0.1117     0.4668
## 
## Omnibus test of direct effect of X on Y:
##      R2-chng          F        df1        df2          p
##       0.0047     0.7644     2.0000   296.0000     0.4665
## 
## ----------
## 
## Relative indirect effects of X on Y:
## 
## condition_1    ->    SFC    ->    punish_post
## 
##        Effect     BootSE   BootLLCI   BootULCI
## X1     0.0939     0.0486     0.0095     0.2012
## X2     0.0831     0.0474    -0.0009     0.1854
## 
##    Normal theory test for relative indirect effects:
##        Effect         se          Z          p
## X1     0.0939     0.0468     2.0045     0.0450
## X2     0.0831     0.0459     1.8104     0.0702
## 
## ******************** ANALYSIS NOTES AND ERRORS ************************ 
## 
## Level of confidence for all confidence intervals in output: 95
## 
## Number of bootstraps for percentile bootstrap confidence intervals: 10000