## 
## ********************* PROCESS for R Version 4.1.1 ********************* 
##  
##            Written by Andrew F. Hayes, Ph.D.  www.afhayes.com              
##    Documentation available in Hayes (2022). www.guilford.com/p/hayes3   
##  
## *********************************************************************** 
##  
## PROCESS is now ready for use.
## Copyright 2022 by Andrew F. Hayes ALL RIGHTS RESERVED
## Workshop schedule at http://haskayne.ucalgary.ca/CCRAM
## 

SES

Mediation analysis: msec -> SES -> blame

## 
## Cronbach's alpha for the 'dfSES' data-set
## 
## Items: 2
## Sample units: 275
## alpha: 0.934
## 
## Bootstrap 95% CI based on 1000 samples
##  2.5% 97.5% 
## 0.907 0.954
## 
## ********************* PROCESS for R Version 4.1.1 ********************* 
##  
##            Written by Andrew F. Hayes, Ph.D.  www.afhayes.com              
##    Documentation available in Hayes (2022). www.guilford.com/p/hayes3   
##  
## *********************************************************************** 
##                  
## Model : 4        
##     Y : blame    
##     X : mat_sec_1
##     M : SES      
## 
## Sample size: 275
## 
## Custom seed: 1234
## 
## 
## *********************************************************************** 
## Outcome Variable: SES
## 
## Model Summary: 
##            R       R-sq        MSE          F        df1        df2          p
##       0.7124     0.5076     1.4703   281.3962     1.0000   273.0000     0.0000
## 
## Model: 
##                coeff         se          t          p       LLCI       ULCI
## constant      2.0504     0.1028    19.9357     0.0000     1.8479     2.2528
## mat_sec_1     2.4533     0.1462    16.7749     0.0000     2.1654     2.7412
## 
## *********************************************************************** 
## Outcome Variable: blame
## 
## Model Summary: 
##            R       R-sq        MSE          F        df1        df2          p
##       0.2759     0.0761     1.0840    11.2030     2.0000   272.0000     0.0000
## 
## Model: 
##                coeff         se          t          p       LLCI       ULCI
## constant      4.6803     0.1384    33.8190     0.0000     4.4078     4.9527
## mat_sec_1    -0.2931     0.1790    -1.6377     0.1026    -0.6454     0.0592
## SES           0.2226     0.0520     4.2833     0.0000     0.1203     0.3249
## 
## ************************ TOTAL EFFECT MODEL *************************** 
## Outcome Variable: blame
## 
## Model Summary: 
##            R       R-sq        MSE          F        df1        df2          p
##       0.1174     0.0138     1.1529     3.8169     1.0000   273.0000     0.0518
## 
## Model: 
##                coeff         se          t          p       LLCI       ULCI
## constant      5.1367     0.0911    56.4015     0.0000     4.9574     5.3160
## mat_sec_1     0.2530     0.1295     1.9537     0.0518    -0.0019     0.5080
## 
## *********************************************************************** 
## Bootstrapping in progress. Please wait.
## 
## ************ TOTAL, DIRECT, AND INDIRECT EFFECTS OF X ON Y ************
## 
## Total effect of X on Y:
##       effect         se          t          p       LLCI       ULCI
##       0.2530     0.1295     1.9537     0.0518    -0.0019     0.5080
## 
## Direct effect of X on Y:
##       effect         se          t          p       LLCI       ULCI
##      -0.2931     0.1790    -1.6377     0.1026    -0.6454     0.0592
## 
## Indirect effect(s) of X on Y:
##         Effect     BootSE   BootLLCI   BootULCI
## SES     0.5461     0.1503     0.2756     0.8717
## 
## Normal theory test for indirect effect(s):
##         Effect         se          Z          p
## SES     0.5461     0.1318     4.1432     0.0000
## 
## ******************** ANALYSIS NOTES AND ERRORS ************************ 
## 
## Level of confidence for all confidence intervals in output: 95
## 
## Number of bootstraps for percentile bootstrap confidence intervals: 10000

Mediation analysis: esec -> SES -> blame

## 
## ********************* PROCESS for R Version 4.1.1 ********************* 
##  
##            Written by Andrew F. Hayes, Ph.D.  www.afhayes.com              
##    Documentation available in Hayes (2022). www.guilford.com/p/hayes3   
##  
## *********************************************************************** 
##                  
## Model : 4        
##     Y : blame    
##     X : emo_sec_1
##     M : SES      
## 
## Sample size: 275
## 
## Custom seed: 1234
## 
## 
## *********************************************************************** 
## Outcome Variable: SES
## 
## Model Summary: 
##            R       R-sq        MSE          F        df1        df2          p
##       0.3818     0.1458     2.5506    46.5857     1.0000   273.0000     0.0000
## 
## Model: 
##                coeff         se          t          p       LLCI       ULCI
## constant      2.6087     0.1360    19.1885     0.0000     2.3411     2.8763
## emo_sec_1     1.3147     0.1926     6.8254     0.0000     0.9355     1.6939
## 
## *********************************************************************** 
## Outcome Variable: blame
## 
## Model Summary: 
##            R       R-sq        MSE          F        df1        df2          p
##       0.2990     0.0894     1.0684    13.3523     2.0000   272.0000     0.0000
## 
## Model: 
##                coeff         se          t          p       LLCI       ULCI
## constant      4.6857     0.1349    34.7473     0.0000     4.4202     4.9512
## emo_sec_1     0.3489     0.1349     2.5870     0.0102     0.0834     0.6145
## SES           0.1233     0.0392     3.1468     0.0018     0.0461     0.2004
## 
## ************************ TOTAL EFFECT MODEL *************************** 
## Outcome Variable: blame
## 
## Model Summary: 
##            R       R-sq        MSE          F        df1        df2          p
##       0.2372     0.0562     1.1033    16.2714     1.0000   273.0000     0.0001
## 
## Model: 
##                coeff         se          t          p       LLCI       ULCI
## constant      5.0072     0.0894    56.0008     0.0000     4.8312     5.1833
## emo_sec_1     0.5110     0.1267     4.0338     0.0001     0.2616     0.7604
## 
## *********************************************************************** 
## Bootstrapping in progress. Please wait.
## 
## ************ TOTAL, DIRECT, AND INDIRECT EFFECTS OF X ON Y ************
## 
## Total effect of X on Y:
##       effect         se          t          p       LLCI       ULCI
##       0.5110     0.1267     4.0338     0.0001     0.2616     0.7604
## 
## Direct effect of X on Y:
##       effect         se          t          p       LLCI       ULCI
##       0.3489     0.1349     2.5870     0.0102     0.0834     0.6145
## 
## Indirect effect(s) of X on Y:
##         Effect     BootSE   BootLLCI   BootULCI
## SES     0.1621     0.0544     0.0606     0.2768
## 
## Normal theory test for indirect effect(s):
##         Effect         se          Z          p
## SES     0.1621     0.0572     2.8328     0.0046
## 
## ******************** ANALYSIS NOTES AND ERRORS ************************ 
## 
## Level of confidence for all confidence intervals in output: 95
## 
## Number of bootstraps for percentile bootstrap confidence intervals: 10000

SEImpairment

Mediation analysis: msec -> SEImpairment -> blame

## 
## Cronbach's alpha for the 'dfSEImpairment' data-set
## 
## Items: 4
## Sample units: 275
## alpha: 0.922
## 
## Bootstrap 95% CI based on 1000 samples
##  2.5% 97.5% 
## 0.902 0.939
## 
## ********************* PROCESS for R Version 4.1.1 ********************* 
##  
##            Written by Andrew F. Hayes, Ph.D.  www.afhayes.com              
##    Documentation available in Hayes (2022). www.guilford.com/p/hayes3   
##  
## *********************************************************************** 
##                     
## Model : 4           
##     Y : blame       
##     X : mat_sec_1   
##     M : SEImpairment
## 
## Sample size: 275
## 
## Custom seed: 1234
## 
## 
## *********************************************************************** 
## Outcome Variable: SEImpairment
## 
## Model Summary: 
##            R       R-sq        MSE          F        df1        df2          p
##       0.0249     0.0006     3.0290     0.1699     1.0000   273.0000     0.6805
## 
## Model: 
##                coeff         se          t          p       LLCI       ULCI
## constant      3.0054     0.1476    20.3592     0.0000     2.7148     3.2960
## mat_sec_1     0.0865     0.2099     0.4122     0.6805    -0.3267     0.4998
## 
## *********************************************************************** 
## Outcome Variable: blame
## 
## Model Summary: 
##            R       R-sq        MSE          F        df1        df2          p
##       0.2811     0.0790     1.0806    11.6716     2.0000   272.0000     0.0000
## 
## Model: 
##                   coeff         se          t          p       LLCI       ULCI
## constant         5.6136     0.1399    40.1202     0.0000     5.3382     5.8891
## mat_sec_1        0.2667     0.1254     2.1269     0.0343     0.0198     0.5137
## SEImpairment    -0.1587     0.0361    -4.3899     0.0000    -0.2299    -0.0875
## 
## ************************ TOTAL EFFECT MODEL *************************** 
## Outcome Variable: blame
## 
## Model Summary: 
##            R       R-sq        MSE          F        df1        df2          p
##       0.1174     0.0138     1.1529     3.8169     1.0000   273.0000     0.0518
## 
## Model: 
##                coeff         se          t          p       LLCI       ULCI
## constant      5.1367     0.0911    56.4015     0.0000     4.9574     5.3160
## mat_sec_1     0.2530     0.1295     1.9537     0.0518    -0.0019     0.5080
## 
## *********************************************************************** 
## Bootstrapping in progress. Please wait.
## 
## ************ TOTAL, DIRECT, AND INDIRECT EFFECTS OF X ON Y ************
## 
## Total effect of X on Y:
##       effect         se          t          p       LLCI       ULCI
##       0.2530     0.1295     1.9537     0.0518    -0.0019     0.5080
## 
## Direct effect of X on Y:
##       effect         se          t          p       LLCI       ULCI
##       0.2667     0.1254     2.1269     0.0343     0.0198     0.5137
## 
## Indirect effect(s) of X on Y:
##                  Effect     BootSE   BootLLCI   BootULCI
## SEImpairment    -0.0137     0.0336    -0.0812     0.0531
## 
## Normal theory test for indirect effect(s):
##                  Effect         se          Z          p
## SEImpairment    -0.0137     0.0343    -0.4002     0.6890
## 
## ******************** ANALYSIS NOTES AND ERRORS ************************ 
## 
## Level of confidence for all confidence intervals in output: 95
## 
## Number of bootstraps for percentile bootstrap confidence intervals: 10000

Mediation analysis: esec -> SEImpairment -> blame

## 
## ********************* PROCESS for R Version 4.1.1 ********************* 
##  
##            Written by Andrew F. Hayes, Ph.D.  www.afhayes.com              
##    Documentation available in Hayes (2022). www.guilford.com/p/hayes3   
##  
## *********************************************************************** 
##                     
## Model : 4           
##     Y : blame       
##     X : emo_sec_1   
##     M : SEImpairment
## 
## Sample size: 275
## 
## Custom seed: 1234
## 
## 
## *********************************************************************** 
## Outcome Variable: SEImpairment
## 
## Model Summary: 
##            R       R-sq        MSE          F        df1        df2          p
##       0.8306     0.6899     0.9399   607.3236     1.0000   273.0000     0.0000
## 
## Model: 
##                coeff         se          t          p       LLCI       ULCI
## constant      4.4837     0.0825    54.3291     0.0000     4.3212     4.6462
## emo_sec_1    -2.8815     0.1169   -24.6439     0.0000    -3.1117    -2.6513
## 
## *********************************************************************** 
## Outcome Variable: blame
## 
## Model Summary: 
##            R       R-sq        MSE          F        df1        df2          p
##       0.2572     0.0662     1.0957     9.6353     2.0000   272.0000     0.0001
## 
## Model: 
##                   coeff         se          t          p       LLCI       ULCI
## constant         5.5051     0.3062    17.9760     0.0000     4.9021     6.1080
## emo_sec_1        0.1911     0.2267     0.8428     0.4001    -0.2552     0.6374
## SEImpairment    -0.1110     0.0653    -1.6991     0.0905    -0.2397     0.0176
## 
## ************************ TOTAL EFFECT MODEL *************************** 
## Outcome Variable: blame
## 
## Model Summary: 
##            R       R-sq        MSE          F        df1        df2          p
##       0.2372     0.0562     1.1033    16.2714     1.0000   273.0000     0.0001
## 
## Model: 
##                coeff         se          t          p       LLCI       ULCI
## constant      5.0072     0.0894    56.0008     0.0000     4.8312     5.1833
## emo_sec_1     0.5110     0.1267     4.0338     0.0001     0.2616     0.7604
## 
## *********************************************************************** 
## Bootstrapping in progress. Please wait.
## 
## ************ TOTAL, DIRECT, AND INDIRECT EFFECTS OF X ON Y ************
## 
## Total effect of X on Y:
##       effect         se          t          p       LLCI       ULCI
##       0.5110     0.1267     4.0338     0.0001     0.2616     0.7604
## 
## Direct effect of X on Y:
##       effect         se          t          p       LLCI       ULCI
##       0.1911     0.2267     0.8428     0.4001    -0.2552     0.6374
## 
## Indirect effect(s) of X on Y:
##                  Effect     BootSE   BootLLCI   BootULCI
## SEImpairment     0.3199     0.2079    -0.0647     0.7583
## 
## Normal theory test for indirect effect(s):
##                  Effect         se          Z          p
## SEImpairment     0.3199     0.1889     1.6936     0.0903
## 
## ******************** ANALYSIS NOTES AND ERRORS ************************ 
## 
## Level of confidence for all confidence intervals in output: 95
## 
## Number of bootstraps for percentile bootstrap confidence intervals: 10000

Surprise

Mediation analysis: msec -> surprise -> blame

## 
## ********************* PROCESS for R Version 4.1.1 ********************* 
##  
##            Written by Andrew F. Hayes, Ph.D.  www.afhayes.com              
##    Documentation available in Hayes (2022). www.guilford.com/p/hayes3   
##  
## *********************************************************************** 
##                  
## Model : 4        
##     Y : blame    
##     X : mat_sec_1
##     M : surprise 
## 
## Sample size: 275
## 
## Custom seed: 1234
## 
## 
## *********************************************************************** 
## Outcome Variable: surprise
## 
## Model Summary: 
##            R       R-sq        MSE          F        df1        df2          p
##       0.0363     0.0013     4.5766     0.3594     1.0000   273.0000     0.5494
## 
## Model: 
##                coeff         se          t          p       LLCI       ULCI
## constant      3.3453     0.1815    18.4362     0.0000     2.9881     3.7026
## mat_sec_1     0.1547     0.2580     0.5995     0.5494    -0.3533     0.6626
## 
## *********************************************************************** 
## Outcome Variable: blame
## 
## Model Summary: 
##            R       R-sq        MSE          F        df1        df2          p
##       0.2550     0.0650     1.0970     9.4588     2.0000   272.0000     0.0001
## 
## Model: 
##                coeff         se          t          p       LLCI       ULCI
## constant      4.7540     0.1331    35.7142     0.0000     4.4919     5.0160
## mat_sec_1     0.2353     0.1264     1.8615     0.0637    -0.0135     0.4842
## surprise      0.1144     0.0296     3.8609     0.0001     0.0561     0.1727
## 
## ************************ TOTAL EFFECT MODEL *************************** 
## Outcome Variable: blame
## 
## Model Summary: 
##            R       R-sq        MSE          F        df1        df2          p
##       0.1174     0.0138     1.1529     3.8169     1.0000   273.0000     0.0518
## 
## Model: 
##                coeff         se          t          p       LLCI       ULCI
## constant      5.1367     0.0911    56.4015     0.0000     4.9574     5.3160
## mat_sec_1     0.2530     0.1295     1.9537     0.0518    -0.0019     0.5080
## 
## *********************************************************************** 
## Bootstrapping in progress. Please wait.
## 
## ************ TOTAL, DIRECT, AND INDIRECT EFFECTS OF X ON Y ************
## 
## Total effect of X on Y:
##       effect         se          t          p       LLCI       ULCI
##       0.2530     0.1295     1.9537     0.0518    -0.0019     0.5080
## 
## Direct effect of X on Y:
##       effect         se          t          p       LLCI       ULCI
##       0.2353     0.1264     1.8615     0.0637    -0.0135     0.4842
## 
## Indirect effect(s) of X on Y:
##              Effect     BootSE   BootLLCI   BootULCI
## surprise     0.0177     0.0297    -0.0427     0.0769
## 
## Normal theory test for indirect effect(s):
##              Effect         se          Z          p
## surprise     0.0177     0.0308     0.5739     0.5661
## 
## ******************** ANALYSIS NOTES AND ERRORS ************************ 
## 
## Level of confidence for all confidence intervals in output: 95
## 
## Number of bootstraps for percentile bootstrap confidence intervals: 10000

Mediation analysis: esec -> surprise -> blame

## 
## ********************* PROCESS for R Version 4.1.1 ********************* 
##  
##            Written by Andrew F. Hayes, Ph.D.  www.afhayes.com              
##    Documentation available in Hayes (2022). www.guilford.com/p/hayes3   
##  
## *********************************************************************** 
##                  
## Model : 4        
##     Y : blame    
##     X : emo_sec_1
##     M : surprise 
## 
## Sample size: 275
## 
## Custom seed: 1234
## 
## 
## *********************************************************************** 
## Outcome Variable: surprise
## 
## Model Summary: 
##            R       R-sq        MSE          F        df1        df2          p
##       0.6077     0.3692     2.8905   159.8180     1.0000   273.0000     0.0000
## 
## Model: 
##                coeff         se          t          p       LLCI       ULCI
## constant      2.1304     0.1447    14.7204     0.0000     1.8455     2.4154
## emo_sec_1     2.5922     0.2050    12.6419     0.0000     2.1885     2.9959
## 
## *********************************************************************** 
## Outcome Variable: blame
## 
## Model Summary: 
##            R       R-sq        MSE          F        df1        df2          p
##       0.2609     0.0681     1.0935     9.9338     2.0000   272.0000     0.0001
## 
## Model: 
##                coeff         se          t          p       LLCI       ULCI
## constant      4.8599     0.1192    40.7650     0.0000     4.6252     5.0946
## emo_sec_1     0.3318     0.1588     2.0892     0.0376     0.0191     0.6444
## surprise      0.0691     0.0372     1.8575     0.0643    -0.0041     0.1424
## 
## ************************ TOTAL EFFECT MODEL *************************** 
## Outcome Variable: blame
## 
## Model Summary: 
##            R       R-sq        MSE          F        df1        df2          p
##       0.2372     0.0562     1.1033    16.2714     1.0000   273.0000     0.0001
## 
## Model: 
##                coeff         se          t          p       LLCI       ULCI
## constant      5.0072     0.0894    56.0008     0.0000     4.8312     5.1833
## emo_sec_1     0.5110     0.1267     4.0338     0.0001     0.2616     0.7604
## 
## *********************************************************************** 
## Bootstrapping in progress. Please wait.
## 
## ************ TOTAL, DIRECT, AND INDIRECT EFFECTS OF X ON Y ************
## 
## Total effect of X on Y:
##       effect         se          t          p       LLCI       ULCI
##       0.5110     0.1267     4.0338     0.0001     0.2616     0.7604
## 
## Direct effect of X on Y:
##       effect         se          t          p       LLCI       ULCI
##       0.3318     0.1588     2.0892     0.0376     0.0191     0.6444
## 
## Indirect effect(s) of X on Y:
##              Effect     BootSE   BootLLCI   BootULCI
## surprise     0.1792     0.0968    -0.0016     0.3825
## 
## Normal theory test for indirect effect(s):
##              Effect         se          Z          p
## surprise     0.1792     0.0978     1.8322     0.0669
## 
## ******************** ANALYSIS NOTES AND ERRORS ************************ 
## 
## Level of confidence for all confidence intervals in output: 95
## 
## Number of bootstraps for percentile bootstrap confidence intervals: 10000

Sympathy

Mediation analysis: msec -> sympathy -> blame

## 
## ********************* PROCESS for R Version 4.1.1 ********************* 
##  
##            Written by Andrew F. Hayes, Ph.D.  www.afhayes.com              
##    Documentation available in Hayes (2022). www.guilford.com/p/hayes3   
##  
## *********************************************************************** 
##                  
## Model : 4        
##     Y : blame    
##     X : mat_sec_1
##     M : sympathy 
## 
## Sample size: 275
## 
## Custom seed: 1234
## 
## 
## *********************************************************************** 
## Outcome Variable: sympathy
## 
## Model Summary: 
##            R       R-sq        MSE          F        df1        df2          p
##       0.1631     0.0266     2.8816     7.4610     1.0000   273.0000     0.0067
## 
## Model: 
##                coeff         se          t          p       LLCI       ULCI
## constant      2.6475     0.1440    18.3876     0.0000     2.3640     2.9309
## mat_sec_1    -0.5592     0.2047    -2.7315     0.0067    -0.9623    -0.1562
## 
## *********************************************************************** 
## Outcome Variable: blame
## 
## Model Summary: 
##            R       R-sq        MSE          F        df1        df2          p
##       0.4122     0.1699     0.9740    27.8369     2.0000   272.0000     0.0000
## 
## Model: 
##                coeff         se          t          p       LLCI       ULCI
## constant      5.8030     0.1252    46.3346     0.0000     5.5564     6.0495
## mat_sec_1     0.1123     0.1206     0.9306     0.3529    -0.1253     0.3498
## sympathy     -0.2517     0.0352    -7.1523     0.0000    -0.3209    -0.1824
## 
## ************************ TOTAL EFFECT MODEL *************************** 
## Outcome Variable: blame
## 
## Model Summary: 
##            R       R-sq        MSE          F        df1        df2          p
##       0.1174     0.0138     1.1529     3.8169     1.0000   273.0000     0.0518
## 
## Model: 
##                coeff         se          t          p       LLCI       ULCI
## constant      5.1367     0.0911    56.4015     0.0000     4.9574     5.3160
## mat_sec_1     0.2530     0.1295     1.9537     0.0518    -0.0019     0.5080
## 
## *********************************************************************** 
## Bootstrapping in progress. Please wait.
## 
## ************ TOTAL, DIRECT, AND INDIRECT EFFECTS OF X ON Y ************
## 
## Total effect of X on Y:
##       effect         se          t          p       LLCI       ULCI
##       0.2530     0.1295     1.9537     0.0518    -0.0019     0.5080
## 
## Direct effect of X on Y:
##       effect         se          t          p       LLCI       ULCI
##       0.1123     0.1206     0.9306     0.3529    -0.1253     0.3498
## 
## Indirect effect(s) of X on Y:
##              Effect     BootSE   BootLLCI   BootULCI
## sympathy     0.1407     0.0560     0.0377     0.2568
## 
## Normal theory test for indirect effect(s):
##              Effect         se          Z          p
## sympathy     0.1407     0.0556     2.5302     0.0114
## 
## ******************** ANALYSIS NOTES AND ERRORS ************************ 
## 
## Level of confidence for all confidence intervals in output: 95
## 
## Number of bootstraps for percentile bootstrap confidence intervals: 10000

Mediation analysis: esec -> sympathy -> blame

## 
## ********************* PROCESS for R Version 4.1.1 ********************* 
##  
##            Written by Andrew F. Hayes, Ph.D.  www.afhayes.com              
##    Documentation available in Hayes (2022). www.guilford.com/p/hayes3   
##  
## *********************************************************************** 
##                  
## Model : 4        
##     Y : blame    
##     X : emo_sec_1
##     M : sympathy 
## 
## Sample size: 275
## 
## Custom seed: 1234
## 
## 
## *********************************************************************** 
## Outcome Variable: sympathy
## 
## Model Summary: 
##            R       R-sq        MSE          F        df1        df2          p
##       0.4235     0.1793     2.4295    59.6494     1.0000   273.0000     0.0000
## 
## Model: 
##                coeff         se          t          p       LLCI       ULCI
## constant      3.0942     0.1327    23.3201     0.0000     2.8330     3.3554
## emo_sec_1    -1.4519     0.1880    -7.7233     0.0000    -1.8220    -1.0818
## 
## *********************************************************************** 
## Outcome Variable: blame
## 
## Model Summary: 
##            R       R-sq        MSE          F        df1        df2          p
##       0.4150     0.1723     0.9712    28.3012     2.0000   272.0000     0.0000
## 
## Model: 
##                coeff         se          t          p       LLCI       ULCI
## constant      5.7383     0.1451    39.5436     0.0000     5.4526     6.0240
## emo_sec_1     0.1680     0.1312     1.2803     0.2015    -0.0903     0.4263
## sympathy     -0.2363     0.0383    -6.1740     0.0000    -0.3116    -0.1609
## 
## ************************ TOTAL EFFECT MODEL *************************** 
## Outcome Variable: blame
## 
## Model Summary: 
##            R       R-sq        MSE          F        df1        df2          p
##       0.2372     0.0562     1.1033    16.2714     1.0000   273.0000     0.0001
## 
## Model: 
##                coeff         se          t          p       LLCI       ULCI
## constant      5.0072     0.0894    56.0008     0.0000     4.8312     5.1833
## emo_sec_1     0.5110     0.1267     4.0338     0.0001     0.2616     0.7604
## 
## *********************************************************************** 
## Bootstrapping in progress. Please wait.
## 
## ************ TOTAL, DIRECT, AND INDIRECT EFFECTS OF X ON Y ************
## 
## Total effect of X on Y:
##       effect         se          t          p       LLCI       ULCI
##       0.5110     0.1267     4.0338     0.0001     0.2616     0.7604
## 
## Direct effect of X on Y:
##       effect         se          t          p       LLCI       ULCI
##       0.1680     0.1312     1.2803     0.2015    -0.0903     0.4263
## 
## Indirect effect(s) of X on Y:
##              Effect     BootSE   BootLLCI   BootULCI
## sympathy     0.3430     0.0766     0.2047     0.5068
## 
## Normal theory test for indirect effect(s):
##              Effect         se          Z          p
## sympathy     0.3430     0.0715     4.7980     0.0000
## 
## ******************** ANALYSIS NOTES AND ERRORS ************************ 
## 
## Level of confidence for all confidence intervals in output: 95
## 
## Number of bootstraps for percentile bootstrap confidence intervals: 10000

Moral self-expression (with 2 variables)

SE1, SE2

Mediation analysis: msec -> selfExpr -> blame

## 
## Cronbach's alpha for the 'dfselfExpr' data-set
## 
## Items: 2
## Sample units: 275
## alpha: 0.915
## 
## Bootstrap 95% CI based on 1000 samples
##  2.5% 97.5% 
## 0.886 0.940
## 
## ********************* PROCESS for R Version 4.1.1 ********************* 
##  
##            Written by Andrew F. Hayes, Ph.D.  www.afhayes.com              
##    Documentation available in Hayes (2022). www.guilford.com/p/hayes3   
##  
## *********************************************************************** 
##                  
## Model : 4        
##     Y : blame    
##     X : mat_sec_1
##     M : selfExpr 
## 
## Sample size: 275
## 
## Custom seed: 1234
## 
## 
## *********************************************************************** 
## Outcome Variable: selfExpr
## 
## Model Summary: 
##            R       R-sq        MSE          F        df1        df2          p
##       0.1485     0.0221     1.7247     6.1562     1.0000   273.0000     0.0137
## 
## Model: 
##                coeff         se          t          p       LLCI       ULCI
## constant      3.8165     0.1114    34.2624     0.0000     3.5973     4.0358
## mat_sec_1     0.3930     0.1584     2.4812     0.0137     0.0812     0.7048
## 
## *********************************************************************** 
## Outcome Variable: blame
## 
## Model Summary: 
##            R       R-sq        MSE          F        df1        df2          p
##       0.4189     0.1755     0.9674    28.9454     2.0000   272.0000     0.0000
## 
## Model: 
##                coeff         se          t          p       LLCI       ULCI
## constant      3.8732     0.1921    20.1662     0.0000     3.4951     4.2513
## mat_sec_1     0.1229     0.1200     1.0245     0.3065    -0.1133     0.3591
## selfExpr      0.3311     0.0453     7.3036     0.0000     0.2418     0.4203
## 
## ************************ TOTAL EFFECT MODEL *************************** 
## Outcome Variable: blame
## 
## Model Summary: 
##            R       R-sq        MSE          F        df1        df2          p
##       0.1174     0.0138     1.1529     3.8169     1.0000   273.0000     0.0518
## 
## Model: 
##                coeff         se          t          p       LLCI       ULCI
## constant      5.1367     0.0911    56.4015     0.0000     4.9574     5.3160
## mat_sec_1     0.2530     0.1295     1.9537     0.0518    -0.0019     0.5080
## 
## *********************************************************************** 
## Bootstrapping in progress. Please wait.
## 
## ************ TOTAL, DIRECT, AND INDIRECT EFFECTS OF X ON Y ************
## 
## Total effect of X on Y:
##       effect         se          t          p       LLCI       ULCI
##       0.2530     0.1295     1.9537     0.0518    -0.0019     0.5080
## 
## Direct effect of X on Y:
##       effect         se          t          p       LLCI       ULCI
##       0.1229     0.1200     1.0245     0.3065    -0.1133     0.3591
## 
## Indirect effect(s) of X on Y:
##              Effect     BootSE   BootLLCI   BootULCI
## selfExpr     0.1301     0.0538     0.0287     0.2410
## 
## Normal theory test for indirect effect(s):
##              Effect         se          Z          p
## selfExpr     0.1301     0.0558     2.3298     0.0198
## 
## ******************** ANALYSIS NOTES AND ERRORS ************************ 
## 
## Level of confidence for all confidence intervals in output: 95
## 
## Number of bootstraps for percentile bootstrap confidence intervals: 10000

Mediation analysis: esec -> selfExpr -> blame

## 
## ********************* PROCESS for R Version 4.1.1 ********************* 
##  
##            Written by Andrew F. Hayes, Ph.D.  www.afhayes.com              
##    Documentation available in Hayes (2022). www.guilford.com/p/hayes3   
##  
## *********************************************************************** 
##                  
## Model : 4        
##     Y : blame    
##     X : emo_sec_1
##     M : selfExpr 
## 
## Sample size: 275
## 
## Custom seed: 1234
## 
## 
## *********************************************************************** 
## Outcome Variable: selfExpr
## 
## Model Summary: 
##            R       R-sq        MSE          F        df1        df2          p
##       0.1649     0.0272     1.7156     7.6332     1.0000   273.0000     0.0061
## 
## Model: 
##                coeff         se          t          p       LLCI       ULCI
## constant      3.7935     0.1115    34.0223     0.0000     3.5740     4.0130
## emo_sec_1     0.4364     0.1580     2.7628     0.0061     0.1255     0.7474
## 
## *********************************************************************** 
## Outcome Variable: blame
## 
## Model Summary: 
##            R       R-sq        MSE          F        df1        df2          p
##       0.4490     0.2016     0.9368    34.3326     2.0000   272.0000     0.0000
## 
## Model: 
##                coeff         se          t          p       LLCI       ULCI
## constant      3.8136     0.1886    20.2196     0.0000     3.4422     4.1849
## emo_sec_1     0.3737     0.1184     3.1571     0.0018     0.1407     0.6067
## selfExpr      0.3147     0.0447     7.0358     0.0000     0.2266     0.4027
## 
## ************************ TOTAL EFFECT MODEL *************************** 
## Outcome Variable: blame
## 
## Model Summary: 
##            R       R-sq        MSE          F        df1        df2          p
##       0.2372     0.0562     1.1033    16.2714     1.0000   273.0000     0.0001
## 
## Model: 
##                coeff         se          t          p       LLCI       ULCI
## constant      5.0072     0.0894    56.0008     0.0000     4.8312     5.1833
## emo_sec_1     0.5110     0.1267     4.0338     0.0001     0.2616     0.7604
## 
## *********************************************************************** 
## Bootstrapping in progress. Please wait.
## 
## ************ TOTAL, DIRECT, AND INDIRECT EFFECTS OF X ON Y ************
## 
## Total effect of X on Y:
##       effect         se          t          p       LLCI       ULCI
##       0.5110     0.1267     4.0338     0.0001     0.2616     0.7604
## 
## Direct effect of X on Y:
##       effect         se          t          p       LLCI       ULCI
##       0.3737     0.1184     3.1571     0.0018     0.1407     0.6067
## 
## Indirect effect(s) of X on Y:
##              Effect     BootSE   BootLLCI   BootULCI
## selfExpr     0.1373     0.0567     0.0360     0.2609
## 
## Normal theory test for indirect effect(s):
##              Effect         se          Z          p
## selfExpr     0.1373     0.0539     2.5494     0.0108
## 
## ******************** ANALYSIS NOTES AND ERRORS ************************ 
## 
## Level of confidence for all confidence intervals in output: 95
## 
## Number of bootstraps for percentile bootstrap confidence intervals: 10000

Moral self-formative control

SFC1, SFC2, SFC3

Mediation analysis: msec -> selfFormControl -> blame

## 
## Cronbach's alpha for the 'dfselfFormControl' data-set
## 
## Items: 3
## Sample units: 275
## alpha: 0.862
## 
## Bootstrap 95% CI based on 1000 samples
##  2.5% 97.5% 
## 0.822 0.891
## 
## ********************* PROCESS for R Version 4.1.1 ********************* 
##  
##            Written by Andrew F. Hayes, Ph.D.  www.afhayes.com              
##    Documentation available in Hayes (2022). www.guilford.com/p/hayes3   
##  
## *********************************************************************** 
##                        
## Model : 4              
##     Y : blame          
##     X : mat_sec_1      
##     M : selfFormControl
## 
## Sample size: 275
## 
## Custom seed: 1234
## 
## 
## *********************************************************************** 
## Outcome Variable: selfFormControl
## 
## Model Summary: 
##            R       R-sq        MSE          F        df1        df2          p
##       0.0848     0.0072     1.5980     1.9793     1.0000   273.0000     0.1606
## 
## Model: 
##                coeff         se          t          p       LLCI       ULCI
## constant      4.0576     0.1072    37.8429     0.0000     3.8465     4.2686
## mat_sec_1     0.2145     0.1525     1.4069     0.1606    -0.0857     0.5147
## 
## *********************************************************************** 
## Outcome Variable: blame
## 
## Model Summary: 
##            R       R-sq        MSE          F        df1        df2          p
##       0.4252     0.1808     0.9612    30.0150     2.0000   272.0000     0.0000
## 
## Model: 
##                      coeff         se          t          p       LLCI
## constant            3.7184     0.2078    17.8922     0.0000     3.3093
## mat_sec_1           0.1780     0.1187     1.5002     0.1347    -0.0556
## selfFormControl     0.3495     0.0469     7.4466     0.0000     0.2571
##                       ULCI
## constant            4.1276
## mat_sec_1           0.4117
## selfFormControl     0.4420
## 
## ************************ TOTAL EFFECT MODEL *************************** 
## Outcome Variable: blame
## 
## Model Summary: 
##            R       R-sq        MSE          F        df1        df2          p
##       0.1174     0.0138     1.1529     3.8169     1.0000   273.0000     0.0518
## 
## Model: 
##                coeff         se          t          p       LLCI       ULCI
## constant      5.1367     0.0911    56.4015     0.0000     4.9574     5.3160
## mat_sec_1     0.2530     0.1295     1.9537     0.0518    -0.0019     0.5080
## 
## *********************************************************************** 
## Bootstrapping in progress. Please wait.
## 
## ************ TOTAL, DIRECT, AND INDIRECT EFFECTS OF X ON Y ************
## 
## Total effect of X on Y:
##       effect         se          t          p       LLCI       ULCI
##       0.2530     0.1295     1.9537     0.0518    -0.0019     0.5080
## 
## Direct effect of X on Y:
##       effect         se          t          p       LLCI       ULCI
##       0.1780     0.1187     1.5002     0.1347    -0.0556     0.4117
## 
## Indirect effect(s) of X on Y:
##                     Effect     BootSE   BootLLCI   BootULCI
## selfFormControl     0.0750     0.0547    -0.0281     0.1870
## 
## Normal theory test for indirect effect(s):
##                     Effect         se          Z          p
## selfFormControl     0.0750     0.0547     1.3706     0.1705
## 
## ******************** ANALYSIS NOTES AND ERRORS ************************ 
## 
## Level of confidence for all confidence intervals in output: 95
## 
## Number of bootstraps for percentile bootstrap confidence intervals: 10000

Mediation analysis: esec -> selfFormControl -> blame

## 
## ********************* PROCESS for R Version 4.1.1 ********************* 
##  
##            Written by Andrew F. Hayes, Ph.D.  www.afhayes.com              
##    Documentation available in Hayes (2022). www.guilford.com/p/hayes3   
##  
## *********************************************************************** 
##                        
## Model : 4              
##     Y : blame          
##     X : emo_sec_1      
##     M : selfFormControl
## 
## Sample size: 275
## 
## Custom seed: 1234
## 
## 
## *********************************************************************** 
## Outcome Variable: selfFormControl
## 
## Model Summary: 
##            R       R-sq        MSE          F        df1        df2          p
##       0.3754     0.1409     1.3827    44.7851     1.0000   273.0000     0.0000
## 
## Model: 
##                coeff         se          t          p       LLCI       ULCI
## constant      3.6908     0.1001    36.8716     0.0000     3.4938     3.8879
## emo_sec_1     0.9491     0.1418     6.6922     0.0000     0.6699     1.2283
## 
## *********************************************************************** 
## Outcome Variable: blame
## 
## Model Summary: 
##            R       R-sq        MSE          F        df1        df2          p
##       0.4261     0.1816     0.9603    30.1727     2.0000   272.0000     0.0000
## 
## Model: 
##                      coeff         se          t          p       LLCI
## constant            3.8058     0.2040    18.6570     0.0000     3.4042
## emo_sec_1           0.2021     0.1275     1.5847     0.1142    -0.0490
## selfFormControl     0.3255     0.0504     6.4538     0.0000     0.2262
##                       ULCI
## constant            4.2074
## emo_sec_1           0.4531
## selfFormControl     0.4248
## 
## ************************ TOTAL EFFECT MODEL *************************** 
## Outcome Variable: blame
## 
## Model Summary: 
##            R       R-sq        MSE          F        df1        df2          p
##       0.2372     0.0562     1.1033    16.2714     1.0000   273.0000     0.0001
## 
## Model: 
##                coeff         se          t          p       LLCI       ULCI
## constant      5.0072     0.0894    56.0008     0.0000     4.8312     5.1833
## emo_sec_1     0.5110     0.1267     4.0338     0.0001     0.2616     0.7604
## 
## *********************************************************************** 
## Bootstrapping in progress. Please wait.
## 
## ************ TOTAL, DIRECT, AND INDIRECT EFFECTS OF X ON Y ************
## 
## Total effect of X on Y:
##       effect         se          t          p       LLCI       ULCI
##       0.5110     0.1267     4.0338     0.0001     0.2616     0.7604
## 
## Direct effect of X on Y:
##       effect         se          t          p       LLCI       ULCI
##       0.2021     0.1275     1.5847     0.1142    -0.0490     0.4531
## 
## Indirect effect(s) of X on Y:
##                     Effect     BootSE   BootLLCI   BootULCI
## selfFormControl     0.3089     0.0738     0.1794     0.4687
## 
## Normal theory test for indirect effect(s):
##                     Effect         se          Z          p
## selfFormControl     0.3089     0.0669     4.6189     0.0000
## 
## ******************** ANALYSIS NOTES AND ERRORS ************************ 
## 
## Level of confidence for all confidence intervals in output: 95
## 
## Number of bootstraps for percentile bootstrap confidence intervals: 10000

circumstances (with 2 variables)

SE3 and SFC4

Mediation analysis: msec -> circumstances -> blame

## 
## Cronbach's alpha for the 'dfcircumstances' data-set
## 
## Items: 2
## Sample units: 275
## alpha: 0.868
## 
## Bootstrap 95% CI based on 1000 samples
##  2.5% 97.5% 
## 0.819 0.906
## 
## ********************* PROCESS for R Version 4.1.1 ********************* 
##  
##            Written by Andrew F. Hayes, Ph.D.  www.afhayes.com              
##    Documentation available in Hayes (2022). www.guilford.com/p/hayes3   
##  
## *********************************************************************** 
##                      
## Model : 4            
##     Y : blame        
##     X : mat_sec_1    
##     M : circumstances
## 
## Sample size: 275
## 
## Custom seed: 1234
## 
## 
## *********************************************************************** 
## Outcome Variable: circumstances
## 
## Model Summary: 
##            R       R-sq        MSE          F        df1        df2          p
##       0.1288     0.0166     2.7516     4.6047     1.0000   273.0000     0.0328
## 
## Model: 
##                coeff         se          t          p       LLCI       ULCI
## constant      2.6295     0.1407    18.6889     0.0000     2.3525     2.9065
## mat_sec_1     0.4293     0.2001     2.1459     0.0328     0.0354     0.8232
## 
## *********************************************************************** 
## Outcome Variable: blame
## 
## Model Summary: 
##            R       R-sq        MSE          F        df1        df2          p
##       0.3127     0.0978     1.0586    14.7430     2.0000   272.0000     0.0000
## 
## Model: 
##                    coeff         se          t          p       LLCI       ULCI
## constant          4.6399     0.1318    35.2163     0.0000     4.3805     4.8993
## mat_sec_1         0.1719     0.1251     1.3737     0.1707    -0.0745     0.4183
## circumstances     0.1889     0.0375     5.0328     0.0000     0.1150     0.2628
## 
## ************************ TOTAL EFFECT MODEL *************************** 
## Outcome Variable: blame
## 
## Model Summary: 
##            R       R-sq        MSE          F        df1        df2          p
##       0.1174     0.0138     1.1529     3.8169     1.0000   273.0000     0.0518
## 
## Model: 
##                coeff         se          t          p       LLCI       ULCI
## constant      5.1367     0.0911    56.4015     0.0000     4.9574     5.3160
## mat_sec_1     0.2530     0.1295     1.9537     0.0518    -0.0019     0.5080
## 
## *********************************************************************** 
## Bootstrapping in progress. Please wait.
## 
## ************ TOTAL, DIRECT, AND INDIRECT EFFECTS OF X ON Y ************
## 
## Total effect of X on Y:
##       effect         se          t          p       LLCI       ULCI
##       0.2530     0.1295     1.9537     0.0518    -0.0019     0.5080
## 
## Direct effect of X on Y:
##       effect         se          t          p       LLCI       ULCI
##       0.1719     0.1251     1.3737     0.1707    -0.0745     0.4183
## 
## Indirect effect(s) of X on Y:
##                   Effect     BootSE   BootLLCI   BootULCI
## circumstances     0.0811     0.0409     0.0059     0.1684
## 
## Normal theory test for indirect effect(s):
##                   Effect         se          Z          p
## circumstances     0.0811     0.0418     1.9418     0.0522
## 
## ******************** ANALYSIS NOTES AND ERRORS ************************ 
## 
## Level of confidence for all confidence intervals in output: 95
## 
## Number of bootstraps for percentile bootstrap confidence intervals: 10000

Mediation analysis: esec -> circumstances -> blame

## 
## ********************* PROCESS for R Version 4.1.1 ********************* 
##  
##            Written by Andrew F. Hayes, Ph.D.  www.afhayes.com              
##    Documentation available in Hayes (2022). www.guilford.com/p/hayes3   
##  
## *********************************************************************** 
##                      
## Model : 4            
##     Y : blame        
##     X : emo_sec_1    
##     M : circumstances
## 
## Sample size: 275
## 
## Custom seed: 1234
## 
## 
## *********************************************************************** 
## Outcome Variable: circumstances
## 
## Model Summary: 
##            R       R-sq        MSE          F        df1        df2          p
##       0.7011     0.4916     1.4226   263.9509     1.0000   273.0000     0.0000
## 
## Model: 
##                coeff         se          t          p       LLCI       ULCI
## constant      1.6775     0.1015    16.5223     0.0000     1.4777     1.8774
## emo_sec_1     2.3371     0.1438    16.2466     0.0000     2.0539     2.6203
## 
## *********************************************************************** 
## Outcome Variable: blame
## 
## Model Summary: 
##            R       R-sq        MSE          F        df1        df2          p
##       0.3046     0.0928     1.0645    13.9078     2.0000   272.0000     0.0000
## 
## Model: 
##                    coeff         se          t          p       LLCI       ULCI
## constant          4.7166     0.1242    37.9744     0.0000     4.4721     4.9611
## emo_sec_1         0.1061     0.1745     0.6080     0.5437    -0.2375     0.4497
## circumstances     0.1733     0.0524     3.3093     0.0011     0.0702     0.2763
## 
## ************************ TOTAL EFFECT MODEL *************************** 
## Outcome Variable: blame
## 
## Model Summary: 
##            R       R-sq        MSE          F        df1        df2          p
##       0.2372     0.0562     1.1033    16.2714     1.0000   273.0000     0.0001
## 
## Model: 
##                coeff         se          t          p       LLCI       ULCI
## constant      5.0072     0.0894    56.0008     0.0000     4.8312     5.1833
## emo_sec_1     0.5110     0.1267     4.0338     0.0001     0.2616     0.7604
## 
## *********************************************************************** 
## Bootstrapping in progress. Please wait.
## 
## ************ TOTAL, DIRECT, AND INDIRECT EFFECTS OF X ON Y ************
## 
## Total effect of X on Y:
##       effect         se          t          p       LLCI       ULCI
##       0.5110     0.1267     4.0338     0.0001     0.2616     0.7604
## 
## Direct effect of X on Y:
##       effect         se          t          p       LLCI       ULCI
##       0.1061     0.1745     0.6080     0.5437    -0.2375     0.4497
## 
## Indirect effect(s) of X on Y:
##                   Effect     BootSE   BootLLCI   BootULCI
## circumstances     0.4049     0.1305     0.1566     0.6710
## 
## Normal theory test for indirect effect(s):
##                   Effect         se          Z          p
## circumstances     0.4049     0.1251     3.2368     0.0012
## 
## ******************** ANALYSIS NOTES AND ERRORS ************************ 
## 
## Level of confidence for all confidence intervals in output: 95
## 
## Number of bootstraps for percentile bootstrap confidence intervals: 10000