## 
## ********************* PROCESS for R Version 4.1.1 ********************* 
##  
##            Written by Andrew F. Hayes, Ph.D.  www.afhayes.com              
##    Documentation available in Hayes (2022). www.guilford.com/p/hayes3   
##  
## *********************************************************************** 
##  
## PROCESS is now ready for use.
## Copyright 2022 by Andrew F. Hayes ALL RIGHTS RESERVED
## Workshop schedule at http://haskayne.ucalgary.ca/CCRAM
## 

SES

Mediation analysis: msec -> SES -> blame with emo_sec_check as covariate

## 
## Cronbach's alpha for the 'dfSES' data-set
## 
## Items: 2
## Sample units: 275
## alpha: 0.934
## 
## Bootstrap 95% CI based on 1000 samples
##  2.5% 97.5% 
## 0.907 0.954
## 
## ********************* PROCESS for R Version 4.1.1 ********************* 
##  
##            Written by Andrew F. Hayes, Ph.D.  www.afhayes.com              
##    Documentation available in Hayes (2022). www.guilford.com/p/hayes3   
##  
## *********************************************************************** 
##                  
## Model : 4        
##     Y : blame    
##     X : mat_sec_1
##     M : SES      
## 
## Covariates: 
##        emo_sec_check
## 
## Sample size: 275
## 
## Custom seed: 1234
## 
## 
## *********************************************************************** 
## Outcome Variable: SES
## 
## Model Summary: 
##            R       R-sq        MSE          F        df1        df2          p
##       0.8093     0.6549     1.0342   258.0926     2.0000   272.0000     0.0000
## 
## Model: 
##                    coeff         se          t          p       LLCI       ULCI
## constant          1.3779     0.1065    12.9432     0.0000     1.1683     1.5875
## mat_sec_1         2.3998     0.1228    19.5491     0.0000     2.1581     2.6415
## emo_sec_check     0.2506     0.0233    10.7761     0.0000     0.2048     0.2964
## 
## *********************************************************************** 
## Outcome Variable: blame
## 
## Model Summary: 
##            R       R-sq        MSE          F        df1        df2          p
##       0.3075     0.0945     1.0663     9.4311     3.0000   271.0000     0.0000
## 
## Model: 
##                    coeff         se          t          p       LLCI       ULCI
## constant          4.6647     0.1374    33.9453     0.0000     4.3942     4.9352
## mat_sec_1        -0.1132     0.1933    -0.5855     0.5587    -0.4938     0.2674
## SES               0.1435     0.0616     2.3308     0.0205     0.0223     0.2647
## emo_sec_check     0.0662     0.0282     2.3485     0.0196     0.0107     0.1218
## 
## ************************ TOTAL EFFECT MODEL *************************** 
## Outcome Variable: blame
## 
## Model Summary: 
##            R       R-sq        MSE          F        df1        df2          p
##       0.2764     0.0764     1.0837    11.2472     2.0000   272.0000     0.0000
## 
## Model: 
##                    coeff         se          t          p       LLCI       ULCI
## constant          4.8624     0.1090    44.6177     0.0000     4.6479     5.0770
## mat_sec_1         0.2312     0.1257     1.8397     0.0669    -0.0162     0.4786
## emo_sec_check     0.1022     0.0238     4.2935     0.0000     0.0553     0.1491
## 
## *********************************************************************** 
## Bootstrapping in progress. Please wait.
## 
## ************ TOTAL, DIRECT, AND INDIRECT EFFECTS OF X ON Y ************
## 
## Total effect of X on Y:
##       effect         se          t          p       LLCI       ULCI
##       0.2312     0.1257     1.8397     0.0669    -0.0162     0.4786
## 
## Direct effect of X on Y:
##       effect         se          t          p       LLCI       ULCI
##      -0.1132     0.1933    -0.5855     0.5587    -0.4938     0.2674
## 
## Indirect effect(s) of X on Y:
##         Effect     BootSE   BootLLCI   BootULCI
## SES     0.3444     0.1908    -0.0068     0.7417
## 
## Normal theory test for indirect effect(s):
##         Effect         se          Z          p
## SES     0.3444     0.1490     2.3114     0.0208
## 
## ******************** ANALYSIS NOTES AND ERRORS ************************ 
## 
## Level of confidence for all confidence intervals in output: 95
## 
## Number of bootstraps for percentile bootstrap confidence intervals: 10000

Mediation analysis: esec -> SES -> blame with mat_sec_check as covariate

## 
## ********************* PROCESS for R Version 4.1.1 ********************* 
##  
##            Written by Andrew F. Hayes, Ph.D.  www.afhayes.com              
##    Documentation available in Hayes (2022). www.guilford.com/p/hayes3   
##  
## *********************************************************************** 
##                  
## Model : 4        
##     Y : blame    
##     X : emo_sec_1
##     M : SES      
## 
## Covariates: 
##        mat_sec_check
## 
## Sample size: 275
## 
## Custom seed: 1234
## 
## 
## *********************************************************************** 
## Outcome Variable: SES
## 
## Model Summary: 
##            R       R-sq        MSE          F        df1        df2          p
##       0.7754     0.6012     1.1951   205.0357     2.0000   272.0000     0.0000
## 
## Model: 
##                    coeff         se          t          p       LLCI       ULCI
## constant          1.2976     0.1191    10.8915     0.0000     1.0630     1.5321
## emo_sec_1         0.6221     0.1376     4.5219     0.0000     0.3513     0.8930
## mat_sec_check     0.5170     0.0293    17.6252     0.0000     0.4592     0.5747
## 
## *********************************************************************** 
## Outcome Variable: blame
## 
## Model Summary: 
##            R       R-sq        MSE          F        df1        df2          p
##       0.2990     0.0894     1.0724     8.8688     3.0000   271.0000     0.0000
## 
## Model: 
##                    coeff         se          t          p       LLCI       ULCI
## constant          4.6856     0.1352    34.6456     0.0000     4.4194     4.9519
## emo_sec_1         0.3489     0.1351     2.5822     0.0103     0.0829     0.6150
## SES               0.1237     0.0574     2.1531     0.0322     0.0106     0.2367
## mat_sec_check    -0.0004     0.0407    -0.0095     0.9924    -0.0804     0.0797
## 
## ************************ TOTAL EFFECT MODEL *************************** 
## Outcome Variable: blame
## 
## Model Summary: 
##            R       R-sq        MSE          F        df1        df2          p
##       0.2717     0.0738     1.0867    10.8405     2.0000   272.0000     0.0000
## 
## Model: 
##                    coeff         se          t          p       LLCI       ULCI
## constant          4.8461     0.1136    42.6564     0.0000     4.6224     5.0697
## emo_sec_1         0.4259     0.1312     3.2462     0.0013     0.1676     0.6842
## mat_sec_check     0.0635     0.0280     2.2719     0.0239     0.0085     0.1186
## 
## *********************************************************************** 
## Bootstrapping in progress. Please wait.
## 
## ************ TOTAL, DIRECT, AND INDIRECT EFFECTS OF X ON Y ************
## 
## Total effect of X on Y:
##       effect         se          t          p       LLCI       ULCI
##       0.4259     0.1312     3.2462     0.0013     0.1676     0.6842
## 
## Direct effect of X on Y:
##       effect         se          t          p       LLCI       ULCI
##       0.3489     0.1351     2.5822     0.0103     0.0829     0.6150
## 
## Indirect effect(s) of X on Y:
##         Effect     BootSE   BootLLCI   BootULCI
## SES     0.0769     0.0385     0.0053     0.1555
## 
## Normal theory test for indirect effect(s):
##         Effect         se          Z          p
## SES     0.0769     0.0404     1.9063     0.0566
## 
## ******************** ANALYSIS NOTES AND ERRORS ************************ 
## 
## Level of confidence for all confidence intervals in output: 95
## 
## Number of bootstraps for percentile bootstrap confidence intervals: 10000

SEImpairment

Mediation analysis: msec -> SEImpairment -> blame with emo_sec_check as covariate

## 
## Cronbach's alpha for the 'dfSEImpairment' data-set
## 
## Items: 4
## Sample units: 275
## alpha: 0.922
## 
## Bootstrap 95% CI based on 1000 samples
##  2.5% 97.5% 
## 0.902 0.939
## 
## ********************* PROCESS for R Version 4.1.1 ********************* 
##  
##            Written by Andrew F. Hayes, Ph.D.  www.afhayes.com              
##    Documentation available in Hayes (2022). www.guilford.com/p/hayes3   
##  
## *********************************************************************** 
##                     
## Model : 4           
##     Y : blame       
##     X : mat_sec_1   
##     M : SEImpairment
## 
## Covariates: 
##        emo_sec_check
## 
## Sample size: 275
## 
## Custom seed: 1234
## 
## 
## *********************************************************************** 
## Outcome Variable: SEImpairment
## 
## Model Summary: 
##            R       R-sq        MSE          F        df1        df2          p
##       0.8700     0.7569     0.7396   423.3388     2.0000   272.0000     0.0000
## 
## Model: 
##                    coeff         se          t          p       LLCI       ULCI
## constant          4.5403     0.0900    50.4290     0.0000     4.3630     4.7175
## mat_sec_1         0.2087     0.1038     2.0103     0.0454     0.0043     0.4131
## emo_sec_check    -0.5720     0.0197   -29.0858     0.0000    -0.6107    -0.5333
## 
## *********************************************************************** 
## Outcome Variable: blame
## 
## Model Summary: 
##            R       R-sq        MSE          F        df1        df2          p
##       0.2868     0.0823     1.0808     8.0965     3.0000   271.0000     0.0000
## 
## Model: 
##                    coeff         se          t          p       LLCI       ULCI
## constant          5.3007     0.3501    15.1395     0.0000     4.6114     5.9900
## mat_sec_1         0.2513     0.1264     1.9880     0.0478     0.0024     0.5002
## SEImpairment     -0.0965     0.0733    -1.3170     0.1890    -0.2408     0.0478
## emo_sec_check     0.0470     0.0482     0.9750     0.3304    -0.0479     0.1419
## 
## ************************ TOTAL EFFECT MODEL *************************** 
## Outcome Variable: blame
## 
## Model Summary: 
##            R       R-sq        MSE          F        df1        df2          p
##       0.2764     0.0764     1.0837    11.2472     2.0000   272.0000     0.0000
## 
## Model: 
##                    coeff         se          t          p       LLCI       ULCI
## constant          4.8624     0.1090    44.6177     0.0000     4.6479     5.0770
## mat_sec_1         0.2312     0.1257     1.8397     0.0669    -0.0162     0.4786
## emo_sec_check     0.1022     0.0238     4.2935     0.0000     0.0553     0.1491
## 
## *********************************************************************** 
## Bootstrapping in progress. Please wait.
## 
## ************ TOTAL, DIRECT, AND INDIRECT EFFECTS OF X ON Y ************
## 
## Total effect of X on Y:
##       effect         se          t          p       LLCI       ULCI
##       0.2312     0.1257     1.8397     0.0669    -0.0162     0.4786
## 
## Direct effect of X on Y:
##       effect         se          t          p       LLCI       ULCI
##       0.2513     0.1264     1.9880     0.0478     0.0024     0.5002
## 
## Indirect effect(s) of X on Y:
##                  Effect     BootSE   BootLLCI   BootULCI
## SEImpairment    -0.0201     0.0188    -0.0635     0.0089
## 
## Normal theory test for indirect effect(s):
##                  Effect         se          Z          p
## SEImpairment    -0.0201     0.0198    -1.0171     0.3091
## 
## ******************** ANALYSIS NOTES AND ERRORS ************************ 
## 
## Level of confidence for all confidence intervals in output: 95
## 
## Number of bootstraps for percentile bootstrap confidence intervals: 10000

Mediation analysis: esec -> SEImpairment -> blame with mat_sec_check as covariate

## 
## ********************* PROCESS for R Version 4.1.1 ********************* 
##  
##            Written by Andrew F. Hayes, Ph.D.  www.afhayes.com              
##    Documentation available in Hayes (2022). www.guilford.com/p/hayes3   
##  
## *********************************************************************** 
##                     
## Model : 4           
##     Y : blame       
##     X : emo_sec_1   
##     M : SEImpairment
## 
## Covariates: 
##        mat_sec_check
## 
## Sample size: 275
## 
## Custom seed: 1234
## 
## 
## *********************************************************************** 
## Outcome Variable: SEImpairment
## 
## Model Summary: 
##            R       R-sq        MSE          F        df1        df2          p
##       0.8318     0.6920     0.9370   305.5165     2.0000   272.0000     0.0000
## 
## Model: 
##                    coeff         se          t          p       LLCI       ULCI
## constant          4.3943     0.1055    41.6553     0.0000     4.1867     4.6020
## emo_sec_1        -2.9287     0.1218   -24.0412     0.0000    -3.1685    -2.6889
## mat_sec_check     0.0352     0.0260     1.3566     0.1760    -0.0159     0.0864
## 
## *********************************************************************** 
## Outcome Variable: blame
## 
## Model Summary: 
##            R       R-sq        MSE          F        df1        df2          p
##       0.2934     0.0861     1.0763     8.5105     3.0000   271.0000     0.0000
## 
## Model: 
##                    coeff         se          t          p       LLCI       ULCI
## constant          5.3909     0.3071    17.5528     0.0000     4.7862     5.9956
## emo_sec_1         0.0628     0.2308     0.2720     0.7858    -0.3916     0.5171
## SEImpairment     -0.1240     0.0650    -1.9079     0.0575    -0.2519     0.0040
## mat_sec_check     0.0679     0.0279     2.4316     0.0157     0.0129     0.1229
## 
## ************************ TOTAL EFFECT MODEL *************************** 
## Outcome Variable: blame
## 
## Model Summary: 
##            R       R-sq        MSE          F        df1        df2          p
##       0.2717     0.0738     1.0867    10.8405     2.0000   272.0000     0.0000
## 
## Model: 
##                    coeff         se          t          p       LLCI       ULCI
## constant          4.8461     0.1136    42.6564     0.0000     4.6224     5.0697
## emo_sec_1         0.4259     0.1312     3.2462     0.0013     0.1676     0.6842
## mat_sec_check     0.0635     0.0280     2.2719     0.0239     0.0085     0.1186
## 
## *********************************************************************** 
## Bootstrapping in progress. Please wait.
## 
## ************ TOTAL, DIRECT, AND INDIRECT EFFECTS OF X ON Y ************
## 
## Total effect of X on Y:
##       effect         se          t          p       LLCI       ULCI
##       0.4259     0.1312     3.2462     0.0013     0.1676     0.6842
## 
## Direct effect of X on Y:
##       effect         se          t          p       LLCI       ULCI
##       0.0628     0.2308     0.2720     0.7858    -0.3916     0.5171
## 
## Indirect effect(s) of X on Y:
##                  Effect     BootSE   BootLLCI   BootULCI
## SEImpairment     0.3631     0.2119    -0.0309     0.8062
## 
## Normal theory test for indirect effect(s):
##                  Effect         se          Z          p
## SEImpairment     0.3631     0.1911     1.9003     0.0574
## 
## ******************** ANALYSIS NOTES AND ERRORS ************************ 
## 
## Level of confidence for all confidence intervals in output: 95
## 
## Number of bootstraps for percentile bootstrap confidence intervals: 10000

Surprise

Mediation analysis: msec -> surprise -> blame with emo_sec_check as covariate

## 
## ********************* PROCESS for R Version 4.1.1 ********************* 
##  
##            Written by Andrew F. Hayes, Ph.D.  www.afhayes.com              
##    Documentation available in Hayes (2022). www.guilford.com/p/hayes3   
##  
## *********************************************************************** 
##                  
## Model : 4        
##     Y : blame    
##     X : mat_sec_1
##     M : surprise 
## 
## Covariates: 
##        emo_sec_check
## 
## Sample size: 275
## 
## Custom seed: 1234
## 
## 
## *********************************************************************** 
## Outcome Variable: surprise
## 
## Model Summary: 
##            R       R-sq        MSE          F        df1        df2          p
##       0.6244     0.3898     2.8065    86.8914     2.0000   272.0000     0.0000
## 
## Model: 
##                    coeff         se          t          p       LLCI       ULCI
## constant          1.9925     0.1754    11.3616     0.0000     1.6473     2.3378
## mat_sec_1         0.0470     0.2022     0.2324     0.8164    -0.3511     0.4451
## emo_sec_check     0.5041     0.0383    13.1604     0.0000     0.4287     0.5795
## 
## *********************************************************************** 
## Outcome Variable: blame
## 
## Model Summary: 
##            R       R-sq        MSE          F        df1        df2          p
##       0.2906     0.0845     1.0782     8.3349     3.0000   271.0000     0.0000
## 
## Model: 
##                    coeff         se          t          p       LLCI       ULCI
## constant          4.7466     0.1320    35.9590     0.0000     4.4867     5.0064
## mat_sec_1         0.2285     0.1254     1.8225     0.0695    -0.0183     0.4752
## surprise          0.0582     0.0376     1.5476     0.1229    -0.0158     0.1322
## emo_sec_check     0.0729     0.0304     2.3993     0.0171     0.0131     0.1327
## 
## ************************ TOTAL EFFECT MODEL *************************** 
## Outcome Variable: blame
## 
## Model Summary: 
##            R       R-sq        MSE          F        df1        df2          p
##       0.2764     0.0764     1.0837    11.2472     2.0000   272.0000     0.0000
## 
## Model: 
##                    coeff         se          t          p       LLCI       ULCI
## constant          4.8624     0.1090    44.6177     0.0000     4.6479     5.0770
## mat_sec_1         0.2312     0.1257     1.8397     0.0669    -0.0162     0.4786
## emo_sec_check     0.1022     0.0238     4.2935     0.0000     0.0553     0.1491
## 
## *********************************************************************** 
## Bootstrapping in progress. Please wait.
## 
## ************ TOTAL, DIRECT, AND INDIRECT EFFECTS OF X ON Y ************
## 
## Total effect of X on Y:
##       effect         se          t          p       LLCI       ULCI
##       0.2312     0.1257     1.8397     0.0669    -0.0162     0.4786
## 
## Direct effect of X on Y:
##       effect         se          t          p       LLCI       ULCI
##       0.2285     0.1254     1.8225     0.0695    -0.0183     0.4752
## 
## Indirect effect(s) of X on Y:
##              Effect     BootSE   BootLLCI   BootULCI
## surprise     0.0027     0.0136    -0.0246     0.0332
## 
## Normal theory test for indirect effect(s):
##              Effect         se          Z          p
## surprise     0.0027     0.0141     0.1937     0.8464
## 
## ******************** ANALYSIS NOTES AND ERRORS ************************ 
## 
## Level of confidence for all confidence intervals in output: 95
## 
## Number of bootstraps for percentile bootstrap confidence intervals: 10000

Mediation analysis: esec -> surprise -> blame with mat_sec_check as covariate

## 
## ********************* PROCESS for R Version 4.1.1 ********************* 
##  
##            Written by Andrew F. Hayes, Ph.D.  www.afhayes.com              
##    Documentation available in Hayes (2022). www.guilford.com/p/hayes3   
##  
## *********************************************************************** 
##                  
## Model : 4        
##     Y : blame    
##     X : emo_sec_1
##     M : surprise 
## 
## Covariates: 
##        mat_sec_check
## 
## Sample size: 275
## 
## Custom seed: 1234
## 
## 
## *********************************************************************** 
## Outcome Variable: surprise
## 
## Model Summary: 
##            R       R-sq        MSE          F        df1        df2          p
##       0.6084     0.3702     2.8970    79.9257     2.0000   272.0000     0.0000
## 
## Model: 
##                    coeff         se          t          p       LLCI       ULCI
## constant          2.0581     0.1855    11.0953     0.0000     1.6929     2.4233
## emo_sec_1         2.5540     0.2142    11.9234     0.0000     2.1323     2.9757
## mat_sec_check     0.0285     0.0457     0.6247     0.5327    -0.0614     0.1184
## 
## *********************************************************************** 
## Outcome Variable: blame
## 
## Model Summary: 
##            R       R-sq        MSE          F        df1        df2          p
##       0.2909     0.0846     1.0780     8.3480     3.0000   271.0000     0.0000
## 
## Model: 
##                    coeff         se          t          p       LLCI       ULCI
## constant          4.7102     0.1364    34.5379     0.0000     4.4417     4.9786
## emo_sec_1         0.2572     0.1612     1.5951     0.1119    -0.0602     0.5746
## surprise          0.0660     0.0370     1.7857     0.0753    -0.0068     0.1389
## mat_sec_check     0.0617     0.0279     2.2118     0.0278     0.0068     0.1165
## 
## ************************ TOTAL EFFECT MODEL *************************** 
## Outcome Variable: blame
## 
## Model Summary: 
##            R       R-sq        MSE          F        df1        df2          p
##       0.2717     0.0738     1.0867    10.8405     2.0000   272.0000     0.0000
## 
## Model: 
##                    coeff         se          t          p       LLCI       ULCI
## constant          4.8461     0.1136    42.6564     0.0000     4.6224     5.0697
## emo_sec_1         0.4259     0.1312     3.2462     0.0013     0.1676     0.6842
## mat_sec_check     0.0635     0.0280     2.2719     0.0239     0.0085     0.1186
## 
## *********************************************************************** 
## Bootstrapping in progress. Please wait.
## 
## ************ TOTAL, DIRECT, AND INDIRECT EFFECTS OF X ON Y ************
## 
## Total effect of X on Y:
##       effect         se          t          p       LLCI       ULCI
##       0.4259     0.1312     3.2462     0.0013     0.1676     0.6842
## 
## Direct effect of X on Y:
##       effect         se          t          p       LLCI       ULCI
##       0.2572     0.1612     1.5951     0.1119    -0.0602     0.5746
## 
## Indirect effect(s) of X on Y:
##              Effect     BootSE   BootLLCI   BootULCI
## surprise     0.1687     0.0954    -0.0083     0.3681
## 
## Normal theory test for indirect effect(s):
##              Effect         se          Z          p
## surprise     0.1687     0.0958     1.7599     0.0784
## 
## ******************** ANALYSIS NOTES AND ERRORS ************************ 
## 
## Level of confidence for all confidence intervals in output: 95
## 
## Number of bootstraps for percentile bootstrap confidence intervals: 10000

Sympathy

Mediation analysis: msec -> sympathy -> blame with emo_sec_check as covariate

## 
## ********************* PROCESS for R Version 4.1.1 ********************* 
##  
##            Written by Andrew F. Hayes, Ph.D.  www.afhayes.com              
##    Documentation available in Hayes (2022). www.guilford.com/p/hayes3   
##  
## *********************************************************************** 
##                  
## Model : 4        
##     Y : blame    
##     X : mat_sec_1
##     M : sympathy 
## 
## Covariates: 
##        emo_sec_check
## 
## Sample size: 275
## 
## Custom seed: 1234
## 
## 
## *********************************************************************** 
## Outcome Variable: sympathy
## 
## Model Summary: 
##            R       R-sq        MSE          F        df1        df2          p
##       0.4815     0.2319     2.2823    41.0522     2.0000   272.0000     0.0000
## 
## Model: 
##                    coeff         se          t          p       LLCI       ULCI
## constant          3.4378     0.1582    21.7371     0.0000     3.1264     3.7491
## mat_sec_1        -0.4963     0.1824    -2.7218     0.0069    -0.8554    -0.1373
## emo_sec_check    -0.2945     0.0345    -8.5255     0.0000    -0.3625    -0.2265
## 
## *********************************************************************** 
## Outcome Variable: blame
## 
## Model Summary: 
##            R       R-sq        MSE          F        df1        df2          p
##       0.4194     0.1759     0.9705    19.2806     3.0000   271.0000     0.0000
## 
## Model: 
##                    coeff         se          t          p       LLCI       ULCI
## constant          5.6400     0.1706    33.0552     0.0000     5.3041     5.9759
## mat_sec_1         0.1189     0.1205     0.9867     0.3247    -0.1184     0.3562
## sympathy         -0.2262     0.0395    -5.7205     0.0000    -0.3040    -0.1483
## emo_sec_check     0.0356     0.0254     1.4034     0.1616    -0.0143     0.0855
## 
## ************************ TOTAL EFFECT MODEL *************************** 
## Outcome Variable: blame
## 
## Model Summary: 
##            R       R-sq        MSE          F        df1        df2          p
##       0.2764     0.0764     1.0837    11.2472     2.0000   272.0000     0.0000
## 
## Model: 
##                    coeff         se          t          p       LLCI       ULCI
## constant          4.8624     0.1090    44.6177     0.0000     4.6479     5.0770
## mat_sec_1         0.2312     0.1257     1.8397     0.0669    -0.0162     0.4786
## emo_sec_check     0.1022     0.0238     4.2935     0.0000     0.0553     0.1491
## 
## *********************************************************************** 
## Bootstrapping in progress. Please wait.
## 
## ************ TOTAL, DIRECT, AND INDIRECT EFFECTS OF X ON Y ************
## 
## Total effect of X on Y:
##       effect         se          t          p       LLCI       ULCI
##       0.2312     0.1257     1.8397     0.0669    -0.0162     0.4786
## 
## Direct effect of X on Y:
##       effect         se          t          p       LLCI       ULCI
##       0.1189     0.1205     0.9867     0.3247    -0.1184     0.3562
## 
## Indirect effect(s) of X on Y:
##              Effect     BootSE   BootLLCI   BootULCI
## sympathy     0.1123     0.0473     0.0294     0.2136
## 
## Normal theory test for indirect effect(s):
##              Effect         se          Z          p
## sympathy     0.1123     0.0462     2.4277     0.0152
## 
## ******************** ANALYSIS NOTES AND ERRORS ************************ 
## 
## Level of confidence for all confidence intervals in output: 95
## 
## Number of bootstraps for percentile bootstrap confidence intervals: 10000

Mediation analysis: esec -> sympathy -> blame with mat_sec_check as covariate

## 
## ********************* PROCESS for R Version 4.1.1 ********************* 
##  
##            Written by Andrew F. Hayes, Ph.D.  www.afhayes.com              
##    Documentation available in Hayes (2022). www.guilford.com/p/hayes3   
##  
## *********************************************************************** 
##                  
## Model : 4        
##     Y : blame    
##     X : emo_sec_1
##     M : sympathy 
## 
## Covariates: 
##        mat_sec_check
## 
## Sample size: 275
## 
## Custom seed: 1234
## 
## 
## *********************************************************************** 
## Outcome Variable: sympathy
## 
## Model Summary: 
##            R       R-sq        MSE          F        df1        df2          p
##       0.4453     0.1983     2.3820    33.6428     2.0000   272.0000     0.0000
## 
## Model: 
##                    coeff         se          t          p       LLCI       ULCI
## constant          3.3608     0.1682    19.9817     0.0000     3.0297     3.6920
## emo_sec_1        -1.3110     0.1942    -6.7499     0.0000    -1.6934    -0.9286
## mat_sec_check    -0.1051     0.0414    -2.5389     0.0117    -0.1867    -0.0236
## 
## *********************************************************************** 
## Outcome Variable: blame
## 
## Model Summary: 
##            R       R-sq        MSE          F        df1        df2          p
##       0.4230     0.1789     0.9670    19.6853     3.0000   271.0000     0.0000
## 
## Model: 
##                    coeff         se          t          p       LLCI       ULCI
## constant          5.6108     0.1684    33.3281     0.0000     5.2794     5.9422
## emo_sec_1         0.1276     0.1337     0.9541     0.3409    -0.1357     0.3908
## sympathy         -0.2275     0.0386    -5.8898     0.0000    -0.3036    -0.1515
## mat_sec_check     0.0396     0.0267     1.4843     0.1389    -0.0129     0.0922
## 
## ************************ TOTAL EFFECT MODEL *************************** 
## Outcome Variable: blame
## 
## Model Summary: 
##            R       R-sq        MSE          F        df1        df2          p
##       0.2717     0.0738     1.0867    10.8405     2.0000   272.0000     0.0000
## 
## Model: 
##                    coeff         se          t          p       LLCI       ULCI
## constant          4.8461     0.1136    42.6564     0.0000     4.6224     5.0697
## emo_sec_1         0.4259     0.1312     3.2462     0.0013     0.1676     0.6842
## mat_sec_check     0.0635     0.0280     2.2719     0.0239     0.0085     0.1186
## 
## *********************************************************************** 
## Bootstrapping in progress. Please wait.
## 
## ************ TOTAL, DIRECT, AND INDIRECT EFFECTS OF X ON Y ************
## 
## Total effect of X on Y:
##       effect         se          t          p       LLCI       ULCI
##       0.4259     0.1312     3.2462     0.0013     0.1676     0.6842
## 
## Direct effect of X on Y:
##       effect         se          t          p       LLCI       ULCI
##       0.1276     0.1337     0.9541     0.3409    -0.1357     0.3908
## 
## Indirect effect(s) of X on Y:
##              Effect     BootSE   BootLLCI   BootULCI
## sympathy     0.2983     0.0724     0.1695     0.4524
## 
## Normal theory test for indirect effect(s):
##              Effect         se          Z          p
## sympathy     0.2983     0.0676     4.4105     0.0000
## 
## ******************** ANALYSIS NOTES AND ERRORS ************************ 
## 
## Level of confidence for all confidence intervals in output: 95
## 
## Number of bootstraps for percentile bootstrap confidence intervals: 10000

Moral self-expression (with 2 variables)

SE1, SE2

Mediation analysis: msec -> selfExpr -> blame with emo_sec_check as covariate

## 
## Cronbach's alpha for the 'dfselfExpr' data-set
## 
## Items: 2
## Sample units: 275
## alpha: 0.915
## 
## Bootstrap 95% CI based on 1000 samples
##  2.5% 97.5% 
## 0.886 0.940
## 
## ********************* PROCESS for R Version 4.1.1 ********************* 
##  
##            Written by Andrew F. Hayes, Ph.D.  www.afhayes.com              
##    Documentation available in Hayes (2022). www.guilford.com/p/hayes3   
##  
## *********************************************************************** 
##                  
## Model : 4        
##     Y : blame    
##     X : mat_sec_1
##     M : selfExpr 
## 
## Covariates: 
##        emo_sec_check
## 
## Sample size: 275
## 
## Custom seed: 1234
## 
## 
## *********************************************************************** 
## Outcome Variable: selfExpr
## 
## Model Summary: 
##            R       R-sq        MSE          F        df1        df2          p
##       0.2528     0.0639     1.6569     9.2874     2.0000   272.0000     0.0001
## 
## Model: 
##                    coeff         se          t          p       LLCI       ULCI
## constant          3.5410     0.1348    26.2778     0.0000     3.2758     3.8063
## mat_sec_1         0.3711     0.1554     2.3882     0.0176     0.0652     0.6770
## emo_sec_check     0.1027     0.0294     3.4881     0.0006     0.0447     0.1606
## 
## *********************************************************************** 
## Outcome Variable: blame
## 
## Model Summary: 
##            R       R-sq        MSE          F        df1        df2          p
##       0.4523     0.2046     0.9367    23.2386     3.0000   271.0000     0.0000
## 
## Model: 
##                    coeff         se          t          p       LLCI       ULCI
## constant          3.7954     0.1906    19.9134     0.0000     3.4201     4.1706
## mat_sec_1         0.1194     0.1180     1.0112     0.3128    -0.1130     0.3518
## selfExpr          0.3013     0.0456     6.6099     0.0000     0.2116     0.3911
## emo_sec_check     0.0713     0.0226     3.1505     0.0018     0.0267     0.1158
## 
## ************************ TOTAL EFFECT MODEL *************************** 
## Outcome Variable: blame
## 
## Model Summary: 
##            R       R-sq        MSE          F        df1        df2          p
##       0.2764     0.0764     1.0837    11.2472     2.0000   272.0000     0.0000
## 
## Model: 
##                    coeff         se          t          p       LLCI       ULCI
## constant          4.8624     0.1090    44.6177     0.0000     4.6479     5.0770
## mat_sec_1         0.2312     0.1257     1.8397     0.0669    -0.0162     0.4786
## emo_sec_check     0.1022     0.0238     4.2935     0.0000     0.0553     0.1491
## 
## *********************************************************************** 
## Bootstrapping in progress. Please wait.
## 
## ************ TOTAL, DIRECT, AND INDIRECT EFFECTS OF X ON Y ************
## 
## Total effect of X on Y:
##       effect         se          t          p       LLCI       ULCI
##       0.2312     0.1257     1.8397     0.0669    -0.0162     0.4786
## 
## Direct effect of X on Y:
##       effect         se          t          p       LLCI       ULCI
##       0.1194     0.1180     1.0112     0.3128    -0.1130     0.3518
## 
## Indirect effect(s) of X on Y:
##              Effect     BootSE   BootLLCI   BootULCI
## selfExpr     0.1118     0.0485     0.0216     0.2133
## 
## Normal theory test for indirect effect(s):
##              Effect         se          Z          p
## selfExpr     0.1118     0.0503     2.2237     0.0262
## 
## ******************** ANALYSIS NOTES AND ERRORS ************************ 
## 
## Level of confidence for all confidence intervals in output: 95
## 
## Number of bootstraps for percentile bootstrap confidence intervals: 10000

Mediation analysis: esec -> selfExpr -> blame with mat_sec_check as covariate

## 
## ********************* PROCESS for R Version 4.1.1 ********************* 
##  
##            Written by Andrew F. Hayes, Ph.D.  www.afhayes.com              
##    Documentation available in Hayes (2022). www.guilford.com/p/hayes3   
##  
## *********************************************************************** 
##                  
## Model : 4        
##     Y : blame    
##     X : emo_sec_1
##     M : selfExpr 
## 
## Covariates: 
##        mat_sec_check
## 
## Sample size: 275
## 
## Custom seed: 1234
## 
## 
## *********************************************************************** 
## Outcome Variable: selfExpr
## 
## Model Summary: 
##            R       R-sq        MSE          F        df1        df2          p
##       0.2275     0.0518     1.6785     7.4249     2.0000   272.0000     0.0007
## 
## Model: 
##                    coeff         se          t          p       LLCI       ULCI
## constant          3.5594     0.1412    25.2103     0.0000     3.2815     3.8374
## emo_sec_1         0.3128     0.1630     1.9187     0.0561    -0.0082     0.6338
## mat_sec_check     0.0923     0.0348     2.6547     0.0084     0.0238     0.1607
## 
## *********************************************************************** 
## Outcome Variable: blame
## 
## Model Summary: 
##            R       R-sq        MSE          F        df1        df2          p
##       0.4548     0.2069     0.9340    23.5627     3.0000   271.0000     0.0000
## 
## Model: 
##                    coeff         se          t          p       LLCI       ULCI
## constant          3.7605     0.1924    19.5464     0.0000     3.3818     4.1393
## emo_sec_1         0.3305     0.1224     2.6989     0.0074     0.0894     0.5715
## selfExpr          0.3050     0.0452     6.7426     0.0000     0.2159     0.3940
## mat_sec_check     0.0354     0.0263     1.3479     0.1788    -0.0163     0.0871
## 
## ************************ TOTAL EFFECT MODEL *************************** 
## Outcome Variable: blame
## 
## Model Summary: 
##            R       R-sq        MSE          F        df1        df2          p
##       0.2717     0.0738     1.0867    10.8405     2.0000   272.0000     0.0000
## 
## Model: 
##                    coeff         se          t          p       LLCI       ULCI
## constant          4.8461     0.1136    42.6564     0.0000     4.6224     5.0697
## emo_sec_1         0.4259     0.1312     3.2462     0.0013     0.1676     0.6842
## mat_sec_check     0.0635     0.0280     2.2719     0.0239     0.0085     0.1186
## 
## *********************************************************************** 
## Bootstrapping in progress. Please wait.
## 
## ************ TOTAL, DIRECT, AND INDIRECT EFFECTS OF X ON Y ************
## 
## Total effect of X on Y:
##       effect         se          t          p       LLCI       ULCI
##       0.4259     0.1312     3.2462     0.0013     0.1676     0.6842
## 
## Direct effect of X on Y:
##       effect         se          t          p       LLCI       ULCI
##       0.3305     0.1224     2.6989     0.0074     0.0894     0.5715
## 
## Indirect effect(s) of X on Y:
##              Effect     BootSE   BootLLCI   BootULCI
## selfExpr     0.0954     0.0550    -0.0021     0.2133
## 
## Normal theory test for indirect effect(s):
##              Effect         se          Z          p
## selfExpr     0.0954     0.0522     1.8269     0.0677
## 
## ******************** ANALYSIS NOTES AND ERRORS ************************ 
## 
## Level of confidence for all confidence intervals in output: 95
## 
## Number of bootstraps for percentile bootstrap confidence intervals: 10000

Moral self-formative control (3 DVs)

SFC1, SFC2, SFC3

Mediation analysis: msec -> selfFormControl -> blame with emo_sec_check as covariate

## 
## Cronbach's alpha for the 'dfselfFormControl' data-set
## 
## Items: 3
## Sample units: 275
## alpha: 0.862
## 
## Bootstrap 95% CI based on 1000 samples
##  2.5% 97.5% 
## 0.822 0.891
## 
## ********************* PROCESS for R Version 4.1.1 ********************* 
##  
##            Written by Andrew F. Hayes, Ph.D.  www.afhayes.com              
##    Documentation available in Hayes (2022). www.guilford.com/p/hayes3   
##  
## *********************************************************************** 
##                        
## Model : 4              
##     Y : blame          
##     X : mat_sec_1      
##     M : selfFormControl
## 
## Covariates: 
##        emo_sec_check
## 
## Sample size: 275
## 
## Custom seed: 1234
## 
## 
## *********************************************************************** 
## Outcome Variable: selfFormControl
## 
## Model Summary: 
##            R       R-sq        MSE          F        df1        df2          p
##       0.4342     0.1885     1.3110    31.5893     2.0000   272.0000     0.0000
## 
## Model: 
##                    coeff         se          t          p       LLCI       ULCI
## constant          3.5099     0.1199    29.2824     0.0000     3.2739     3.7459
## mat_sec_1         0.1709     0.1382     1.2366     0.2173    -0.1012     0.4430
## emo_sec_check     0.2041     0.0262     7.7952     0.0000     0.1525     0.2556
## 
## *********************************************************************** 
## Outcome Variable: blame
## 
## Model Summary: 
##            R       R-sq        MSE          F        df1        df2          p
##       0.4333     0.1878     0.9565    20.8846     3.0000   271.0000     0.0000
## 
## Model: 
##                      coeff         se          t          p       LLCI
## constant            3.7542     0.2086    17.9939     0.0000     3.3434
## mat_sec_1           0.1772     0.1184     1.4969     0.1356    -0.0559
## selfFormControl     0.3158     0.0518     6.0966     0.0000     0.2138
## emo_sec_check       0.0378     0.0247     1.5265     0.1281    -0.0109
##                       ULCI
## constant            4.1649
## mat_sec_1           0.4103
## selfFormControl     0.4177
## emo_sec_check       0.0865
## 
## ************************ TOTAL EFFECT MODEL *************************** 
## Outcome Variable: blame
## 
## Model Summary: 
##            R       R-sq        MSE          F        df1        df2          p
##       0.2764     0.0764     1.0837    11.2472     2.0000   272.0000     0.0000
## 
## Model: 
##                    coeff         se          t          p       LLCI       ULCI
## constant          4.8624     0.1090    44.6177     0.0000     4.6479     5.0770
## mat_sec_1         0.2312     0.1257     1.8397     0.0669    -0.0162     0.4786
## emo_sec_check     0.1022     0.0238     4.2935     0.0000     0.0553     0.1491
## 
## *********************************************************************** 
## Bootstrapping in progress. Please wait.
## 
## ************ TOTAL, DIRECT, AND INDIRECT EFFECTS OF X ON Y ************
## 
## Total effect of X on Y:
##       effect         se          t          p       LLCI       ULCI
##       0.2312     0.1257     1.8397     0.0669    -0.0162     0.4786
## 
## Direct effect of X on Y:
##       effect         se          t          p       LLCI       ULCI
##       0.1772     0.1184     1.4969     0.1356    -0.0559     0.4103
## 
## Indirect effect(s) of X on Y:
##                     Effect     BootSE   BootLLCI   BootULCI
## selfFormControl     0.0540     0.0455    -0.0311     0.1474
## 
## Normal theory test for indirect effect(s):
##                     Effect         se          Z          p
## selfFormControl     0.0540     0.0451     1.1965     0.2315
## 
## ******************** ANALYSIS NOTES AND ERRORS ************************ 
## 
## Level of confidence for all confidence intervals in output: 95
## 
## Number of bootstraps for percentile bootstrap confidence intervals: 10000

Mediation analysis: esec -> selfFormControl -> blame with mat_sec_check as covariate

## 
## ********************* PROCESS for R Version 4.1.1 ********************* 
##  
##            Written by Andrew F. Hayes, Ph.D.  www.afhayes.com              
##    Documentation available in Hayes (2022). www.guilford.com/p/hayes3   
##  
## *********************************************************************** 
##                        
## Model : 4              
##     Y : blame          
##     X : emo_sec_1      
##     M : selfFormControl
## 
## Covariates: 
##        mat_sec_check
## 
## Sample size: 275
## 
## Custom seed: 1234
## 
## 
## *********************************************************************** 
## Outcome Variable: selfFormControl
## 
## Model Summary: 
##            R       R-sq        MSE          F        df1        df2          p
##       0.3899     0.1521     1.3698    24.3884     2.0000   272.0000     0.0000
## 
## Model: 
##                    coeff         se          t          p       LLCI       ULCI
## constant          3.5403     0.1276    27.7563     0.0000     3.2892     3.7915
## emo_sec_1         0.8696     0.1473     5.9039     0.0000     0.5796     1.1596
## mat_sec_check     0.0593     0.0314     1.8895     0.0599    -0.0025     0.1212
## 
## *********************************************************************** 
## Outcome Variable: blame
## 
## Model Summary: 
##            R       R-sq        MSE          F        df1        df2          p
##       0.4361     0.1902     0.9537    21.2171     3.0000   271.0000     0.0000
## 
## Model: 
##                      coeff         se          t          p       LLCI
## constant            3.7283     0.2083    17.8949     0.0000     3.3181
## emo_sec_1           0.1513     0.1305     1.1592     0.2474    -0.1057
## selfFormControl     0.3157     0.0506     6.2406     0.0000     0.2161
## mat_sec_check       0.0448     0.0264     1.6991     0.0904    -0.0071
##                       ULCI
## constant            4.1385
## emo_sec_1           0.4083
## selfFormControl     0.4153
## mat_sec_check       0.0967
## 
## ************************ TOTAL EFFECT MODEL *************************** 
## Outcome Variable: blame
## 
## Model Summary: 
##            R       R-sq        MSE          F        df1        df2          p
##       0.2717     0.0738     1.0867    10.8405     2.0000   272.0000     0.0000
## 
## Model: 
##                    coeff         se          t          p       LLCI       ULCI
## constant          4.8461     0.1136    42.6564     0.0000     4.6224     5.0697
## emo_sec_1         0.4259     0.1312     3.2462     0.0013     0.1676     0.6842
## mat_sec_check     0.0635     0.0280     2.2719     0.0239     0.0085     0.1186
## 
## *********************************************************************** 
## Bootstrapping in progress. Please wait.
## 
## ************ TOTAL, DIRECT, AND INDIRECT EFFECTS OF X ON Y ************
## 
## Total effect of X on Y:
##       effect         se          t          p       LLCI       ULCI
##       0.4259     0.1312     3.2462     0.0013     0.1676     0.6842
## 
## Direct effect of X on Y:
##       effect         se          t          p       LLCI       ULCI
##       0.1513     0.1305     1.1592     0.2474    -0.1057     0.4083
## 
## Indirect effect(s) of X on Y:
##                     Effect     BootSE   BootLLCI   BootULCI
## selfFormControl     0.2746     0.0706     0.1512     0.4269
## 
## Normal theory test for indirect effect(s):
##                     Effect         se          Z          p
## selfFormControl     0.2746     0.0644     4.2600     0.0000
## 
## ******************** ANALYSIS NOTES AND ERRORS ************************ 
## 
## Level of confidence for all confidence intervals in output: 95
## 
## Number of bootstraps for percentile bootstrap confidence intervals: 10000

Moral self-formative control (4 DVs)

SFC1, SFC2, SFC3, and SFC4

Mediation analysis: msec -> selfFormControl2 -> blame with emo_sec_check as covariate

## 
## Cronbach's alpha for the 'dfselfFormControl2' data-set
## 
## Items: 4
## Sample units: 275
## alpha: 0.817
## 
## Bootstrap 95% CI based on 1000 samples
##  2.5% 97.5% 
## 0.775 0.852
## 
## ********************* PROCESS for R Version 4.1.1 ********************* 
##  
##            Written by Andrew F. Hayes, Ph.D.  www.afhayes.com              
##    Documentation available in Hayes (2022). www.guilford.com/p/hayes3   
##  
## *********************************************************************** 
##                         
## Model : 4               
##     Y : blame           
##     X : mat_sec_1       
##     M : selfFormControl2
## 
## Covariates: 
##        emo_sec_check
## 
## Sample size: 275
## 
## Custom seed: 1234
## 
## 
## *********************************************************************** 
## Outcome Variable: selfFormControl2
## 
## Model Summary: 
##            R       R-sq        MSE          F        df1        df2          p
##       0.5621     0.3159     0.9846    62.8137     2.0000   272.0000     0.0000
## 
## Model: 
##                    coeff         se          t          p       LLCI       ULCI
## constant          3.0370     0.1039    29.2362     0.0000     2.8325     3.2415
## mat_sec_1         0.1846     0.1198     1.5411     0.1244    -0.0512     0.4204
## emo_sec_check     0.2503     0.0227    11.0305     0.0000     0.2056     0.2949
## 
## *********************************************************************** 
## Outcome Variable: blame
## 
## Model Summary: 
##            R       R-sq        MSE          F        df1        df2          p
##       0.4356     0.1898     0.9542    21.1555     3.0000   271.0000     0.0000
## 
## Model: 
##                       coeff         se          t          p       LLCI
## constant             3.7462     0.2081    17.9989     0.0000     3.3364
## mat_sec_1            0.1633     0.1184     1.3792     0.1690    -0.0698
## selfFormControl2     0.3676     0.0597     6.1578     0.0000     0.2500
## emo_sec_check        0.0102     0.0269     0.3799     0.7043    -0.0427
##                        ULCI
## constant             4.1559
## mat_sec_1            0.3965
## selfFormControl2     0.4851
## emo_sec_check        0.0631
## 
## ************************ TOTAL EFFECT MODEL *************************** 
## Outcome Variable: blame
## 
## Model Summary: 
##            R       R-sq        MSE          F        df1        df2          p
##       0.2764     0.0764     1.0837    11.2472     2.0000   272.0000     0.0000
## 
## Model: 
##                    coeff         se          t          p       LLCI       ULCI
## constant          4.8624     0.1090    44.6177     0.0000     4.6479     5.0770
## mat_sec_1         0.2312     0.1257     1.8397     0.0669    -0.0162     0.4786
## emo_sec_check     0.1022     0.0238     4.2935     0.0000     0.0553     0.1491
## 
## *********************************************************************** 
## Bootstrapping in progress. Please wait.
## 
## ************ TOTAL, DIRECT, AND INDIRECT EFFECTS OF X ON Y ************
## 
## Total effect of X on Y:
##       effect         se          t          p       LLCI       ULCI
##       0.2312     0.1257     1.8397     0.0669    -0.0162     0.4786
## 
## Direct effect of X on Y:
##       effect         se          t          p       LLCI       ULCI
##       0.1633     0.1184     1.3792     0.1690    -0.0698     0.3965
## 
## Indirect effect(s) of X on Y:
##                      Effect     BootSE   BootLLCI   BootULCI
## selfFormControl2     0.0679     0.0465    -0.0190     0.1664
## 
## Normal theory test for indirect effect(s):
##                      Effect         se          Z          p
## selfFormControl2     0.0679     0.0459     1.4768     0.1397
## 
## ******************** ANALYSIS NOTES AND ERRORS ************************ 
## 
## Level of confidence for all confidence intervals in output: 95
## 
## Number of bootstraps for percentile bootstrap confidence intervals: 10000

Mediation analysis: esec -> selfFormControl2 -> blame with mat_sec_check as covariate

## 
## ********************* PROCESS for R Version 4.1.1 ********************* 
##  
##            Written by Andrew F. Hayes, Ph.D.  www.afhayes.com              
##    Documentation available in Hayes (2022). www.guilford.com/p/hayes3   
##  
## *********************************************************************** 
##                         
## Model : 4               
##     Y : blame           
##     X : emo_sec_1       
##     M : selfFormControl2
## 
## Covariates: 
##        mat_sec_check
## 
## Sample size: 275
## 
## Custom seed: 1234
## 
## 
## *********************************************************************** 
## Outcome Variable: selfFormControl2
## 
## Model Summary: 
##            R       R-sq        MSE          F        df1        df2          p
##       0.5197     0.2701     1.0507    50.3224     2.0000   272.0000     0.0000
## 
## Model: 
##                    coeff         se          t          p       LLCI       ULCI
## constant          3.0658     0.1117    27.4456     0.0000     2.8459     3.2858
## emo_sec_1         1.1240     0.1290     8.7132     0.0000     0.8700     1.3779
## mat_sec_check     0.0626     0.0275     2.2767     0.0236     0.0085     0.1168
## 
## *********************************************************************** 
## Outcome Variable: blame
## 
## Model Summary: 
##            R       R-sq        MSE          F        df1        df2          p
##       0.4375     0.1914     0.9523    21.3785     3.0000   271.0000     0.0000
## 
## Model: 
##                       coeff         se          t          p       LLCI
## constant             3.7353     0.2065    18.0908     0.0000     3.3288
## emo_sec_1            0.0186     0.1389     0.1342     0.8933    -0.2548
## selfFormControl2     0.3623     0.0577     6.2765     0.0000     0.2487
## mat_sec_check        0.0409     0.0264     1.5459     0.1233    -0.0112
##                        ULCI
## constant             4.1418
## emo_sec_1            0.2921
## selfFormControl2     0.4760
## mat_sec_check        0.0929
## 
## ************************ TOTAL EFFECT MODEL *************************** 
## Outcome Variable: blame
## 
## Model Summary: 
##            R       R-sq        MSE          F        df1        df2          p
##       0.2717     0.0738     1.0867    10.8405     2.0000   272.0000     0.0000
## 
## Model: 
##                    coeff         se          t          p       LLCI       ULCI
## constant          4.8461     0.1136    42.6564     0.0000     4.6224     5.0697
## emo_sec_1         0.4259     0.1312     3.2462     0.0013     0.1676     0.6842
## mat_sec_check     0.0635     0.0280     2.2719     0.0239     0.0085     0.1186
## 
## *********************************************************************** 
## Bootstrapping in progress. Please wait.
## 
## ************ TOTAL, DIRECT, AND INDIRECT EFFECTS OF X ON Y ************
## 
## Total effect of X on Y:
##       effect         se          t          p       LLCI       ULCI
##       0.4259     0.1312     3.2462     0.0013     0.1676     0.6842
## 
## Direct effect of X on Y:
##       effect         se          t          p       LLCI       ULCI
##       0.0186     0.1389     0.1342     0.8933    -0.2548     0.2921
## 
## Indirect effect(s) of X on Y:
##                      Effect     BootSE   BootLLCI   BootULCI
## selfFormControl2     0.4072     0.0881     0.2504     0.5960
## 
## Normal theory test for indirect effect(s):
##                      Effect         se          Z          p
## selfFormControl2     0.4072     0.0803     5.0708     0.0000
## 
## ******************** ANALYSIS NOTES AND ERRORS ************************ 
## 
## Level of confidence for all confidence intervals in output: 95
## 
## Number of bootstraps for percentile bootstrap confidence intervals: 10000

Third self-expression item

SE3: To what extent do you think Kevin’s criminal behavior reflects the circumstances in which he grew up?

[0=Not at all, …, 6=Extremely]

Note: This variable has been reverse coded.

Mediation analysis: msec -> SE3 -> blame with emo_sec_check as covariate

## 
## ********************* PROCESS for R Version 4.1.1 ********************* 
##  
##            Written by Andrew F. Hayes, Ph.D.  www.afhayes.com              
##    Documentation available in Hayes (2022). www.guilford.com/p/hayes3   
##  
## *********************************************************************** 
##                  
## Model : 4        
##     Y : blame    
##     X : mat_sec_1
##     M : SE3      
## 
## Covariates: 
##        emo_sec_check
## 
## Sample size: 275
## 
## Custom seed: 1234
## 
## 
## *********************************************************************** 
## Outcome Variable: SE3
## 
## Model Summary: 
##            R       R-sq        MSE          F        df1        df2          p
##       0.7266     0.5279     1.7135   152.0922     2.0000   272.0000     0.0000
## 
## Model: 
##                    coeff         se          t          p       LLCI       ULCI
## constant          1.2245     0.1370     8.9357     0.0000     0.9547     1.4943
## mat_sec_1         0.4407     0.1580     2.7889     0.0057     0.1296     0.7518
## emo_sec_check     0.5115     0.0299    17.0895     0.0000     0.4526     0.5704
## 
## *********************************************************************** 
## Outcome Variable: blame
## 
## Model Summary: 
##            R       R-sq        MSE          F        df1        df2          p
##       0.3074     0.0945     1.0664     9.4246     3.0000   271.0000     0.0000
## 
## Model: 
##                    coeff         se          t          p       LLCI       ULCI
## constant          4.7262     0.1230    38.4382     0.0000     4.4841     4.9682
## mat_sec_1         0.1821     0.1264     1.4407     0.1508    -0.0668     0.4310
## SE3               0.1113     0.0478     2.3269     0.0207     0.0171     0.2055
## emo_sec_check     0.0453     0.0340     1.3312     0.1842    -0.0217     0.1122
## 
## ************************ TOTAL EFFECT MODEL *************************** 
## Outcome Variable: blame
## 
## Model Summary: 
##            R       R-sq        MSE          F        df1        df2          p
##       0.2764     0.0764     1.0837    11.2472     2.0000   272.0000     0.0000
## 
## Model: 
##                    coeff         se          t          p       LLCI       ULCI
## constant          4.8624     0.1090    44.6177     0.0000     4.6479     5.0770
## mat_sec_1         0.2312     0.1257     1.8397     0.0669    -0.0162     0.4786
## emo_sec_check     0.1022     0.0238     4.2935     0.0000     0.0553     0.1491
## 
## *********************************************************************** 
## Bootstrapping in progress. Please wait.
## 
## ************ TOTAL, DIRECT, AND INDIRECT EFFECTS OF X ON Y ************
## 
## Total effect of X on Y:
##       effect         se          t          p       LLCI       ULCI
##       0.2312     0.1257     1.8397     0.0669    -0.0162     0.4786
## 
## Direct effect of X on Y:
##       effect         se          t          p       LLCI       ULCI
##       0.1821     0.1264     1.4407     0.1508    -0.0668     0.4310
## 
## Indirect effect(s) of X on Y:
##         Effect     BootSE   BootLLCI   BootULCI
## SE3     0.0490     0.0271     0.0075     0.1131
## 
## Normal theory test for indirect effect(s):
##         Effect         se          Z          p
## SE3     0.0490     0.0285     1.7226     0.0850
## 
## ******************** ANALYSIS NOTES AND ERRORS ************************ 
## 
## Level of confidence for all confidence intervals in output: 95
## 
## Number of bootstraps for percentile bootstrap confidence intervals: 10000

Mediation analysis: esec -> SE3 -> blame with mat_sec_check as covariate

## 
## ********************* PROCESS for R Version 4.1.1 ********************* 
##  
##            Written by Andrew F. Hayes, Ph.D.  www.afhayes.com              
##    Documentation available in Hayes (2022). www.guilford.com/p/hayes3   
##  
## *********************************************************************** 
##                  
## Model : 4        
##     Y : blame    
##     X : emo_sec_1
##     M : SE3      
## 
## Covariates: 
##        mat_sec_check
## 
## Sample size: 275
## 
## Custom seed: 1234
## 
## 
## *********************************************************************** 
## Outcome Variable: SE3
## 
## Model Summary: 
##            R       R-sq        MSE          F        df1        df2          p
##       0.7226     0.5222     1.7342   148.6456     2.0000   272.0000     0.0000
## 
## Model: 
##                    coeff         se          t          p       LLCI       ULCI
## constant          1.2395     0.1435     8.6365     0.0000     0.9569     1.5220
## emo_sec_1         2.5371     0.1657    15.3085     0.0000     2.2108     2.8633
## mat_sec_check     0.1141     0.0353     3.2308     0.0014     0.0446     0.1837
## 
## *********************************************************************** 
## Outcome Variable: blame
## 
## Model Summary: 
##            R       R-sq        MSE          F        df1        df2          p
##       0.3087     0.0953     1.0655     9.5146     3.0000   271.0000     0.0000
## 
## Model: 
##                    coeff         se          t          p       LLCI       ULCI
## constant          4.6967     0.1270    36.9877     0.0000     4.4467     4.9467
## emo_sec_1         0.1201     0.1772     0.6778     0.4985    -0.2288     0.4691
## SE3               0.1205     0.0475     2.5357     0.0118     0.0269     0.2141
## mat_sec_check     0.0498     0.0282     1.7642     0.0788    -0.0058     0.1053
## 
## ************************ TOTAL EFFECT MODEL *************************** 
## Outcome Variable: blame
## 
## Model Summary: 
##            R       R-sq        MSE          F        df1        df2          p
##       0.2717     0.0738     1.0867    10.8405     2.0000   272.0000     0.0000
## 
## Model: 
##                    coeff         se          t          p       LLCI       ULCI
## constant          4.8461     0.1136    42.6564     0.0000     4.6224     5.0697
## emo_sec_1         0.4259     0.1312     3.2462     0.0013     0.1676     0.6842
## mat_sec_check     0.0635     0.0280     2.2719     0.0239     0.0085     0.1186
## 
## *********************************************************************** 
## Bootstrapping in progress. Please wait.
## 
## ************ TOTAL, DIRECT, AND INDIRECT EFFECTS OF X ON Y ************
## 
## Total effect of X on Y:
##       effect         se          t          p       LLCI       ULCI
##       0.4259     0.1312     3.2462     0.0013     0.1676     0.6842
## 
## Direct effect of X on Y:
##       effect         se          t          p       LLCI       ULCI
##       0.1201     0.1772     0.6778     0.4985    -0.2288     0.4691
## 
## Indirect effect(s) of X on Y:
##         Effect     BootSE   BootLLCI   BootULCI
## SE3     0.3057     0.1218     0.0734     0.5564
## 
## Normal theory test for indirect effect(s):
##         Effect         se          Z          p
## SE3     0.3057     0.1225     2.4965     0.0125
## 
## ******************** ANALYSIS NOTES AND ERRORS ************************ 
## 
## Level of confidence for all confidence intervals in output: 95
## 
## Number of bootstraps for percentile bootstrap confidence intervals: 10000

circumstances (with 2 variables)

SE3 and SFC4

Mediation analysis: msec -> circumstances -> blame with emo_sec_check as covariate

## 
## Cronbach's alpha for the 'dfcircumstances' data-set
## 
## Items: 2
## Sample units: 275
## alpha: 0.868
## 
## Bootstrap 95% CI based on 1000 samples
##  2.5% 97.5% 
## 0.819 0.906
## 
## ********************* PROCESS for R Version 4.1.1 ********************* 
##  
##            Written by Andrew F. Hayes, Ph.D.  www.afhayes.com              
##    Documentation available in Hayes (2022). www.guilford.com/p/hayes3   
##  
## *********************************************************************** 
##                      
## Model : 4            
##     Y : blame        
##     X : mat_sec_1    
##     M : circumstances
## 
## Covariates: 
##        emo_sec_check
## 
## Sample size: 275
## 
## Custom seed: 1234
## 
## 
## *********************************************************************** 
## Outcome Variable: circumstances
## 
## Model Summary: 
##            R       R-sq        MSE          F        df1        df2          p
##       0.7239     0.5240     1.3367   149.7259     2.0000   272.0000     0.0000
## 
## Model: 
##                    coeff         se          t          p       LLCI       ULCI
## constant          1.4215     0.1210    11.7443     0.0000     1.1832     1.6598
## mat_sec_1         0.3332     0.1396     2.3872     0.0177     0.0584     0.6079
## emo_sec_check     0.4502     0.0264    17.0286     0.0000     0.3981     0.5022
## 
## *********************************************************************** 
## Outcome Variable: blame
## 
## Model Summary: 
##            R       R-sq        MSE          F        df1        df2          p
##       0.3185     0.1014     1.0582    10.1983     3.0000   271.0000     0.0000
## 
## Model: 
##                    coeff         se          t          p       LLCI       ULCI
## constant          4.6516     0.1322    35.1852     0.0000     4.3913     4.9119
## mat_sec_1         0.1818     0.1255     1.4487     0.1486    -0.0652     0.4288
## circumstances     0.1483     0.0539     2.7492     0.0064     0.0421     0.2545
## emo_sec_check     0.0354     0.0338     1.0480     0.2956    -0.0311     0.1020
## 
## ************************ TOTAL EFFECT MODEL *************************** 
## Outcome Variable: blame
## 
## Model Summary: 
##            R       R-sq        MSE          F        df1        df2          p
##       0.2764     0.0764     1.0837    11.2472     2.0000   272.0000     0.0000
## 
## Model: 
##                    coeff         se          t          p       LLCI       ULCI
## constant          4.8624     0.1090    44.6177     0.0000     4.6479     5.0770
## mat_sec_1         0.2312     0.1257     1.8397     0.0669    -0.0162     0.4786
## emo_sec_check     0.1022     0.0238     4.2935     0.0000     0.0553     0.1491
## 
## *********************************************************************** 
## Bootstrapping in progress. Please wait.
## 
## ************ TOTAL, DIRECT, AND INDIRECT EFFECTS OF X ON Y ************
## 
## Total effect of X on Y:
##       effect         se          t          p       LLCI       ULCI
##       0.2312     0.1257     1.8397     0.0669    -0.0162     0.4786
## 
## Direct effect of X on Y:
##       effect         se          t          p       LLCI       ULCI
##       0.1818     0.1255     1.4487     0.1486    -0.0652     0.4288
## 
## Indirect effect(s) of X on Y:
##                   Effect     BootSE   BootLLCI   BootULCI
## circumstances     0.0494     0.0281     0.0052     0.1157
## 
## Normal theory test for indirect effect(s):
##                   Effect         se          Z          p
## circumstances     0.0494     0.0284     1.7382     0.0822
## 
## ******************** ANALYSIS NOTES AND ERRORS ************************ 
## 
## Level of confidence for all confidence intervals in output: 95
## 
## Number of bootstraps for percentile bootstrap confidence intervals: 10000

Mediation analysis: esec -> circumstances -> blame with mat_sec_check as covariate

## 
## ********************* PROCESS for R Version 4.1.1 ********************* 
##  
##            Written by Andrew F. Hayes, Ph.D.  www.afhayes.com              
##    Documentation available in Hayes (2022). www.guilford.com/p/hayes3   
##  
## *********************************************************************** 
##                      
## Model : 4            
##     Y : blame        
##     X : emo_sec_1    
##     M : circumstances
## 
## Covariates: 
##        mat_sec_check
## 
## Sample size: 275
## 
## Custom seed: 1234
## 
## 
## *********************************************************************** 
## Outcome Variable: circumstances
## 
## Model Summary: 
##            R       R-sq        MSE          F        df1        df2          p
##       0.7123     0.5074     1.3834   140.0884     2.0000   272.0000     0.0000
## 
## Model: 
##                    coeff         se          t          p       LLCI       ULCI
## constant          1.4409     0.1282    11.2414     0.0000     1.1886     1.6933
## emo_sec_1         2.2121     0.1480    14.9446     0.0000     1.9207     2.5035
## mat_sec_check     0.0933     0.0316     2.9566     0.0034     0.0312     0.1554
## 
## *********************************************************************** 
## Outcome Variable: blame
## 
## Model Summary: 
##            R       R-sq        MSE          F        df1        df2          p
##       0.3207     0.1029     1.0565    10.3571     3.0000   271.0000     0.0000
## 
## Model: 
##                    coeff         se          t          p       LLCI       ULCI
## constant          4.6200     0.1356    34.0793     0.0000     4.3531     4.8869
## emo_sec_1         0.0787     0.1746     0.4510     0.6523    -0.2649     0.4224
## circumstances     0.1569     0.0530     2.9616     0.0033     0.0526     0.2613
## mat_sec_check     0.0489     0.0280     1.7454     0.0821    -0.0063     0.1041
## 
## ************************ TOTAL EFFECT MODEL *************************** 
## Outcome Variable: blame
## 
## Model Summary: 
##            R       R-sq        MSE          F        df1        df2          p
##       0.2717     0.0738     1.0867    10.8405     2.0000   272.0000     0.0000
## 
## Model: 
##                    coeff         se          t          p       LLCI       ULCI
## constant          4.8461     0.1136    42.6564     0.0000     4.6224     5.0697
## emo_sec_1         0.4259     0.1312     3.2462     0.0013     0.1676     0.6842
## mat_sec_check     0.0635     0.0280     2.2719     0.0239     0.0085     0.1186
## 
## *********************************************************************** 
## Bootstrapping in progress. Please wait.
## 
## ************ TOTAL, DIRECT, AND INDIRECT EFFECTS OF X ON Y ************
## 
## Total effect of X on Y:
##       effect         se          t          p       LLCI       ULCI
##       0.4259     0.1312     3.2462     0.0013     0.1676     0.6842
## 
## Direct effect of X on Y:
##       effect         se          t          p       LLCI       ULCI
##       0.0787     0.1746     0.4510     0.6523    -0.2649     0.4224
## 
## Indirect effect(s) of X on Y:
##                   Effect     BootSE   BootLLCI   BootULCI
## circumstances     0.3471     0.1237     0.1090     0.5983
## 
## Normal theory test for indirect effect(s):
##                   Effect         se          Z          p
## circumstances     0.3471     0.1198     2.8989     0.0037
## 
## ******************** ANALYSIS NOTES AND ERRORS ************************ 
## 
## Level of confidence for all confidence intervals in output: 95
## 
## Number of bootstraps for percentile bootstrap confidence intervals: 10000