Effect of SES1 on blame

Unstandardized:

## 
## Call:
## lm(formula = "blame ~ SES1", data = df)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -5.2303 -0.4334  0.3634  0.7697  1.1760 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  4.82402    0.12617  38.234  < 2e-16 ***
## SES1         0.13543    0.03375   4.013 7.76e-05 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.051 on 273 degrees of freedom
## Multiple R-squared:  0.05569,    Adjusted R-squared:  0.05223 
## F-statistic:  16.1 on 1 and 273 DF,  p-value: 7.763e-05

Standardized:

## 
## Call:
## lm(formula = scale(blame) ~ scale(SES1), data = df)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -4.8462 -0.4016  0.3367  0.7132  1.0896 
## 
## Coefficients:
##              Estimate Std. Error t value Pr(>|t|)    
## (Intercept) 1.467e-16  5.871e-02   0.000        1    
## scale(SES1) 2.360e-01  5.881e-02   4.013 7.76e-05 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.9735 on 273 degrees of freedom
## Multiple R-squared:  0.05569,    Adjusted R-squared:  0.05223 
## F-statistic:  16.1 on 1 and 273 DF,  p-value: 7.763e-05

Effect of SES2 on blame

Unstandardized:

## 
## Call:
## lm(formula = "blame ~ SES2", data = df)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -5.0383 -0.5563  0.3070  0.6164  1.3070 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  4.69301    0.13877  33.818  < 2e-16 ***
## SES2         0.17265    0.03756   4.597 6.57e-06 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.042 on 273 degrees of freedom
## Multiple R-squared:  0.07184,    Adjusted R-squared:  0.06844 
## F-statistic: 21.13 on 1 and 273 DF,  p-value: 6.57e-06

Standardized:

## 
## Call:
## lm(formula = scale(blame) ~ scale(SES2), data = df)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -4.6684 -0.5154  0.2844  0.5711  1.2110 
## 
## Coefficients:
##              Estimate Std. Error t value Pr(>|t|)    
## (Intercept) 1.021e-16  5.820e-02   0.000        1    
## scale(SES2) 2.680e-01  5.831e-02   4.597 6.57e-06 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.9652 on 273 degrees of freedom
## Multiple R-squared:  0.07184,    Adjusted R-squared:  0.06844 
## F-statistic: 21.13 on 1 and 273 DF,  p-value: 6.57e-06

Effect of SES (composite) on blame

Unstandardized:

## 
## Call:
## lm(formula = "blame ~ SES", data = df)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -5.1381 -0.4621  0.3760  0.6999  1.2668 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  4.73324    0.13498  35.067  < 2e-16 ***
## SES          0.16196    0.03658   4.428 1.38e-05 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.044 on 273 degrees of freedom
## Multiple R-squared:  0.067,  Adjusted R-squared:  0.06358 
## F-statistic:  19.6 on 1 and 273 DF,  p-value: 1.38e-05

Standardized:

## 
## Call:
## lm(formula = scale(blame) ~ scale(SES), data = df)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -4.7608 -0.4281  0.3484  0.6485  1.1737 
## 
## Coefficients:
##              Estimate Std. Error t value Pr(>|t|)    
## (Intercept) 1.386e-16  5.835e-02   0.000        1    
## scale(SES)  2.588e-01  5.846e-02   4.428 1.38e-05 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.9677 on 273 degrees of freedom
## Multiple R-squared:  0.067,  Adjusted R-squared:  0.06358 
## F-statistic:  19.6 on 1 and 273 DF,  p-value: 1.38e-05