Unstandardized:
##
## Call:
## lm(formula = "blame ~ SES1", data = df)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.2874 -0.2874 0.6996 0.7257 0.7648
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 5.23524 0.20699 25.292 <2e-16 ***
## SES1 0.01303 0.05793 0.225 0.822
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.031 on 135 degrees of freedom
## Multiple R-squared: 0.0003746, Adjusted R-squared: -0.00703
## F-statistic: 0.05058 on 1 and 135 DF, p-value: 0.8224
Standardized:
##
## Call:
## lm(formula = scale(blame) ~ scale(SES1), data = df)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.1744 -0.2798 0.6812 0.7066 0.7446
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.724e-16 8.574e-02 0.000 1.000
## scale(SES1) 1.935e-02 8.605e-02 0.225 0.822
##
## Residual standard error: 1.004 on 135 degrees of freedom
## Multiple R-squared: 0.0003746, Adjusted R-squared: -0.00703
## F-statistic: 0.05058 on 1 and 135 DF, p-value: 0.8224
Unstandardized:
##
## Call:
## lm(formula = "blame ~ SES2", data = df)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.3288 -0.3288 0.5955 0.7469 0.9740
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 5.0260 0.2450 20.510 <2e-16 ***
## SES2 0.0757 0.0689 1.099 0.274
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.026 on 135 degrees of freedom
## Multiple R-squared: 0.008863, Adjusted R-squared: 0.001521
## F-statistic: 1.207 on 1 and 135 DF, p-value: 0.2739
Standardized:
##
## Call:
## lm(formula = scale(blame) ~ scale(SES2), data = df)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.2147 -0.3201 0.5798 0.7273 0.9484
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.701e-16 8.537e-02 0.000 1.000
## scale(SES2) 9.414e-02 8.568e-02 1.099 0.274
##
## Residual standard error: 0.9992 on 135 degrees of freedom
## Multiple R-squared: 0.008863, Adjusted R-squared: 0.001521
## F-statistic: 1.207 on 1 and 135 DF, p-value: 0.2739
Unstandardized:
##
## Call:
## lm(formula = "blame ~ SES", data = df)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.3095 -0.3095 0.6459 0.7350 0.8685
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 5.13147 0.23697 21.655 <2e-16 ***
## SES 0.04452 0.06714 0.663 0.508
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.029 on 135 degrees of freedom
## Multiple R-squared: 0.003246, Adjusted R-squared: -0.004138
## F-statistic: 0.4396 on 1 and 135 DF, p-value: 0.5084
Standardized:
##
## Call:
## lm(formula = scale(blame) ~ scale(SES), data = df)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.1960 -0.3014 0.6289 0.7156 0.8456
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.629e-16 8.561e-02 0.000 1.000
## scale(SES) 5.697e-02 8.593e-02 0.663 0.508
##
## Residual standard error: 1.002 on 135 degrees of freedom
## Multiple R-squared: 0.003246, Adjusted R-squared: -0.004138
## F-statistic: 0.4396 on 1 and 135 DF, p-value: 0.5084