## 
## ********************* PROCESS for R Version 4.1.1 ********************* 
##  
##            Written by Andrew F. Hayes, Ph.D.  www.afhayes.com              
##    Documentation available in Hayes (2022). www.guilford.com/p/hayes3   
##  
## *********************************************************************** 
##  
## PROCESS is now ready for use.
## Copyright 2022 by Andrew F. Hayes ALL RIGHTS RESERVED
## Workshop schedule at http://haskayne.ucalgary.ca/CCRAM
## 

SES

Mediation analysis: security -> SES -> blame

## 
## Cronbach's alpha for the 'dfSES' data-set
## 
## Items: 2
## Sample units: 138
## alpha: 0.966
## 
## Bootstrap 95% CI based on 1000 samples
##  2.5% 97.5% 
## 0.955 0.976
## 
## ********************* PROCESS for R Version 4.1.1 ********************* 
##  
##            Written by Andrew F. Hayes, Ph.D.  www.afhayes.com              
##    Documentation available in Hayes (2022). www.guilford.com/p/hayes3   
##  
## *********************************************************************** 
##                   
## Model : 4         
##     Y : blame     
##     X : security_1
##     M : SES       
## 
## Sample size: 138
## 
## Custom seed: 1234
## 
## 
## *********************************************************************** 
## Outcome Variable: SES
## 
## Model Summary: 
##            R       R-sq        MSE          F        df1        df2          p
##       0.9155     0.8381     0.6907   703.9671     1.0000   136.0000     0.0000
## 
## Model: 
##                 coeff         se          t          p       LLCI       ULCI
## constant       5.1544     0.1008    51.1451     0.0000     4.9551     5.3537
## security_1    -3.7544     0.1415   -26.5324     0.0000    -4.0342    -3.4746
## 
## *********************************************************************** 
## Outcome Variable: blame
## 
## Model Summary: 
##            R       R-sq        MSE          F        df1        df2          p
##       0.3817     0.1457     1.1114    11.5098     2.0000   135.0000     0.0000
## 
## Model: 
##                 coeff         se          t          p       LLCI       ULCI
## constant       4.3724     0.5751     7.6032     0.0000     3.2351     5.5097
## security_1     0.1568     0.4461     0.3515     0.7257    -0.7254     1.0391
## SES            0.2444     0.1088     2.2472     0.0262     0.0293     0.4596
## 
## ************************ TOTAL EFFECT MODEL *************************** 
## Outcome Variable: blame
## 
## Model Summary: 
##            R       R-sq        MSE          F        df1        df2          p
##       0.3372     0.1137     1.1445    17.4500     1.0000   136.0000     0.0001
## 
## Model: 
##                 coeff         se          t          p       LLCI       ULCI
## constant       5.6324     0.1297    43.4147     0.0000     5.3758     5.8889
## security_1    -0.7609     0.1822    -4.1773     0.0001    -1.1211    -0.4007
## 
## *********************************************************************** 
## Bootstrapping in progress. Please wait.
## 
## ************ TOTAL, DIRECT, AND INDIRECT EFFECTS OF X ON Y ************
## 
## Total effect of X on Y:
##       effect         se          t          p       LLCI       ULCI
##      -0.7609     0.1822    -4.1773     0.0001    -1.1211    -0.4007
## 
## Direct effect of X on Y:
##       effect         se          t          p       LLCI       ULCI
##       0.1568     0.4461     0.3515     0.7257    -0.7254     1.0391
## 
## Indirect effect(s) of X on Y:
##         Effect     BootSE   BootLLCI   BootULCI
## SES    -0.9177     0.7353    -2.3090     0.5434
## 
## Normal theory test for indirect effect(s):
##         Effect         se          Z          p
## SES    -0.9177     0.4101    -2.2376     0.0252
## 
## ******************** ANALYSIS NOTES AND ERRORS ************************ 
## 
## Level of confidence for all confidence intervals in output: 95
## 
## Number of bootstraps for percentile bootstrap confidence intervals: 10000

SEImpairment

Mediation analysis: security -> SEImpairment -> blame

## 
## Cronbach's alpha for the 'dfSEImpairment' data-set
## 
## Items: 4
## Sample units: 138
## alpha: 0.92
## 
## Bootstrap 95% CI based on 1000 samples
##  2.5% 97.5% 
## 0.895 0.939
## 
## ********************* PROCESS for R Version 4.1.1 ********************* 
##  
##            Written by Andrew F. Hayes, Ph.D.  www.afhayes.com              
##    Documentation available in Hayes (2022). www.guilford.com/p/hayes3   
##  
## *********************************************************************** 
##                     
## Model : 4           
##     Y : blame       
##     X : security_1  
##     M : SEImpairment
## 
## Sample size: 138
## 
## Custom seed: 1234
## 
## 
## *********************************************************************** 
## Outcome Variable: SEImpairment
## 
## Model Summary: 
##            R       R-sq        MSE          F        df1        df2          p
##       0.8412     0.7077     0.8131   329.2185     1.0000   136.0000     0.0000
## 
## Model: 
##                 coeff         se          t          p       LLCI       ULCI
## constant       1.6213     0.1094    14.8269     0.0000     1.4051     1.8376
## security_1     2.7858     0.1535    18.1444     0.0000     2.4822     3.0894
## 
## *********************************************************************** 
## Outcome Variable: blame
## 
## Model Summary: 
##            R       R-sq        MSE          F        df1        df2          p
##       0.3717     0.1382     1.1211    10.8239     2.0000   135.0000     0.0000
## 
## Model: 
##                   coeff         se          t          p       LLCI       ULCI
## constant         5.9520     0.2077    28.6572     0.0000     5.5413     6.3628
## security_1      -0.2117     0.3334    -0.6348     0.5266    -0.8711     0.4478
## SEImpairment    -0.1972     0.1007    -1.9581     0.0523    -0.3963     0.0020
## 
## ************************ TOTAL EFFECT MODEL *************************** 
## Outcome Variable: blame
## 
## Model Summary: 
##            R       R-sq        MSE          F        df1        df2          p
##       0.3372     0.1137     1.1445    17.4500     1.0000   136.0000     0.0001
## 
## Model: 
##                 coeff         se          t          p       LLCI       ULCI
## constant       5.6324     0.1297    43.4147     0.0000     5.3758     5.8889
## security_1    -0.7609     0.1822    -4.1773     0.0001    -1.1211    -0.4007
## 
## *********************************************************************** 
## Bootstrapping in progress. Please wait.
## 
## ************ TOTAL, DIRECT, AND INDIRECT EFFECTS OF X ON Y ************
## 
## Total effect of X on Y:
##       effect         se          t          p       LLCI       ULCI
##      -0.7609     0.1822    -4.1773     0.0001    -1.1211    -0.4007
## 
## Direct effect of X on Y:
##       effect         se          t          p       LLCI       ULCI
##      -0.2117     0.3334    -0.6348     0.5266    -0.8711     0.4478
## 
## Indirect effect(s) of X on Y:
##                  Effect     BootSE   BootLLCI   BootULCI
## SEImpairment    -0.5493     0.3511    -1.3096     0.0579
## 
## Normal theory test for indirect effect(s):
##                  Effect         se          Z          p
## SEImpairment    -0.5493     0.2826    -1.9439     0.0519
## 
## ******************** ANALYSIS NOTES AND ERRORS ************************ 
## 
## Level of confidence for all confidence intervals in output: 95
## 
## Number of bootstraps for percentile bootstrap confidence intervals: 10000

Surprise

Mediation analysis: security -> surprise -> blame

## 
## ********************* PROCESS for R Version 4.1.1 ********************* 
##  
##            Written by Andrew F. Hayes, Ph.D.  www.afhayes.com              
##    Documentation available in Hayes (2022). www.guilford.com/p/hayes3   
##  
## *********************************************************************** 
##                   
## Model : 4         
##     Y : blame     
##     X : security_1
##     M : surprise  
## 
## Sample size: 138
## 
## Custom seed: 1234
## 
## 
## *********************************************************************** 
## Outcome Variable: surprise
## 
## Model Summary: 
##            R       R-sq        MSE          F        df1        df2          p
##       0.6656     0.4431     2.3813   108.2046     1.0000   136.0000     0.0000
## 
## Model: 
##                 coeff         se          t          p       LLCI       ULCI
## constant       4.6618     0.1871    24.9111     0.0000     4.2917     5.0318
## security_1    -2.7332     0.2628   -10.4021     0.0000    -3.2528    -2.2136
## 
## *********************************************************************** 
## Outcome Variable: blame
## 
## Model Summary: 
##            R       R-sq        MSE          F        df1        df2          p
##       0.3376     0.1140     1.1526     8.6839     2.0000   135.0000     0.0003
## 
## Model: 
##                 coeff         se          t          p       LLCI       ULCI
## constant       5.5762     0.3071    18.1591     0.0000     4.9689     6.1835
## security_1    -0.7280     0.2450    -2.9720     0.0035    -1.2124    -0.2436
## surprise       0.0120     0.0597     0.2019     0.8403    -0.1059     0.1300
## 
## ************************ TOTAL EFFECT MODEL *************************** 
## Outcome Variable: blame
## 
## Model Summary: 
##            R       R-sq        MSE          F        df1        df2          p
##       0.3372     0.1137     1.1445    17.4500     1.0000   136.0000     0.0001
## 
## Model: 
##                 coeff         se          t          p       LLCI       ULCI
## constant       5.6324     0.1297    43.4147     0.0000     5.3758     5.8889
## security_1    -0.7609     0.1822    -4.1773     0.0001    -1.1211    -0.4007
## 
## *********************************************************************** 
## Bootstrapping in progress. Please wait.
## 
## ************ TOTAL, DIRECT, AND INDIRECT EFFECTS OF X ON Y ************
## 
## Total effect of X on Y:
##       effect         se          t          p       LLCI       ULCI
##      -0.7609     0.1822    -4.1773     0.0001    -1.1211    -0.4007
## 
## Direct effect of X on Y:
##       effect         se          t          p       LLCI       ULCI
##      -0.7280     0.2450    -2.9720     0.0035    -1.2124    -0.2436
## 
## Indirect effect(s) of X on Y:
##              Effect     BootSE   BootLLCI   BootULCI
## surprise    -0.0329     0.1674    -0.3760     0.2917
## 
## Normal theory test for indirect effect(s):
##              Effect         se          Z          p
## surprise    -0.0329     0.1638    -0.2010     0.8407
## 
## ******************** ANALYSIS NOTES AND ERRORS ************************ 
## 
## Level of confidence for all confidence intervals in output: 95
## 
## Number of bootstraps for percentile bootstrap confidence intervals: 10000

Sympathy

Mediation analysis: security -> sympathy -> blame

## 
## ********************* PROCESS for R Version 4.1.1 ********************* 
##  
##            Written by Andrew F. Hayes, Ph.D.  www.afhayes.com              
##    Documentation available in Hayes (2022). www.guilford.com/p/hayes3   
##  
## *********************************************************************** 
##                   
## Model : 4         
##     Y : blame     
##     X : security_1
##     M : sympathy  
## 
## Sample size: 138
## 
## Custom seed: 1234
## 
## 
## *********************************************************************** 
## Outcome Variable: sympathy
## 
## Model Summary: 
##            R       R-sq        MSE          F        df1        df2          p
##       0.5590     0.3125     2.2426    61.8078     1.0000   136.0000     0.0000
## 
## Model: 
##                 coeff         se          t          p       LLCI       ULCI
## constant       1.3382     0.1816     7.3691     0.0000     0.9791     1.6974
## security_1     2.0046     0.2550     7.8618     0.0000     1.5004     2.5089
## 
## *********************************************************************** 
## Outcome Variable: blame
## 
## Model Summary: 
##            R       R-sq        MSE          F        df1        df2          p
##       0.4486     0.2012     1.0392    17.0031     2.0000   135.0000     0.0000
## 
## Model: 
##                 coeff         se          t          p       LLCI       ULCI
## constant       5.9327     0.1462    40.5711     0.0000     5.6435     6.2219
## security_1    -0.3110     0.2093    -1.4856     0.1397    -0.7250     0.1030
## sympathy      -0.2245     0.0584    -3.8454     0.0002    -0.3399    -0.1090
## 
## ************************ TOTAL EFFECT MODEL *************************** 
## Outcome Variable: blame
## 
## Model Summary: 
##            R       R-sq        MSE          F        df1        df2          p
##       0.3372     0.1137     1.1445    17.4500     1.0000   136.0000     0.0001
## 
## Model: 
##                 coeff         se          t          p       LLCI       ULCI
## constant       5.6324     0.1297    43.4147     0.0000     5.3758     5.8889
## security_1    -0.7609     0.1822    -4.1773     0.0001    -1.1211    -0.4007
## 
## *********************************************************************** 
## Bootstrapping in progress. Please wait.
## 
## ************ TOTAL, DIRECT, AND INDIRECT EFFECTS OF X ON Y ************
## 
## Total effect of X on Y:
##       effect         se          t          p       LLCI       ULCI
##      -0.7609     0.1822    -4.1773     0.0001    -1.1211    -0.4007
## 
## Direct effect of X on Y:
##       effect         se          t          p       LLCI       ULCI
##      -0.3110     0.2093    -1.4856     0.1397    -0.7250     0.1030
## 
## Indirect effect(s) of X on Y:
##              Effect     BootSE   BootLLCI   BootULCI
## sympathy    -0.4500     0.1247    -0.7160    -0.2253
## 
## Normal theory test for indirect effect(s):
##              Effect         se          Z          p
## sympathy    -0.4500     0.1311    -3.4320     0.0006
## 
## ******************** ANALYSIS NOTES AND ERRORS ************************ 
## 
## Level of confidence for all confidence intervals in output: 95
## 
## Number of bootstraps for percentile bootstrap confidence intervals: 10000

Moral self-expression (with 2 variables)

SE1, SE2

Mediation analysis: security -> selfExpr -> blame

## 
## Cronbach's alpha for the 'dfselfExpr' data-set
## 
## Items: 2
## Sample units: 138
## alpha: 0.919
## 
## Bootstrap 95% CI based on 1000 samples
##  2.5% 97.5% 
## 0.877 0.950
## 
## ********************* PROCESS for R Version 4.1.1 ********************* 
##  
##            Written by Andrew F. Hayes, Ph.D.  www.afhayes.com              
##    Documentation available in Hayes (2022). www.guilford.com/p/hayes3   
##  
## *********************************************************************** 
##                   
## Model : 4         
##     Y : blame     
##     X : security_1
##     M : selfExpr  
## 
## Sample size: 138
## 
## Custom seed: 1234
## 
## 
## *********************************************************************** 
## Outcome Variable: selfExpr
## 
## Model Summary: 
##            R       R-sq        MSE          F        df1        df2          p
##       0.3129     0.0979     1.6037    14.7583     1.0000   136.0000     0.0002
## 
## Model: 
##                 coeff         se          t          p       LLCI       ULCI
## constant       4.4926     0.1536    29.2544     0.0000     4.1889     4.7963
## security_1    -0.8284     0.2156    -3.8417     0.0002    -1.2548    -0.4019
## 
## *********************************************************************** 
## Outcome Variable: blame
## 
## Model Summary: 
##            R       R-sq        MSE          F        df1        df2          p
##       0.4834     0.2337     0.9969    20.5864     2.0000   135.0000     0.0000
## 
## Model: 
##                 coeff         se          t          p       LLCI       ULCI
## constant       4.2359     0.3270    12.9548     0.0000     3.5892     4.8825
## security_1    -0.5034     0.1790    -2.8127     0.0056    -0.8574    -0.1495
## selfExpr       0.3108     0.0676     4.5977     0.0000     0.1771     0.4445
## 
## ************************ TOTAL EFFECT MODEL *************************** 
## Outcome Variable: blame
## 
## Model Summary: 
##            R       R-sq        MSE          F        df1        df2          p
##       0.3372     0.1137     1.1445    17.4500     1.0000   136.0000     0.0001
## 
## Model: 
##                 coeff         se          t          p       LLCI       ULCI
## constant       5.6324     0.1297    43.4147     0.0000     5.3758     5.8889
## security_1    -0.7609     0.1822    -4.1773     0.0001    -1.1211    -0.4007
## 
## *********************************************************************** 
## Bootstrapping in progress. Please wait.
## 
## ************ TOTAL, DIRECT, AND INDIRECT EFFECTS OF X ON Y ************
## 
## Total effect of X on Y:
##       effect         se          t          p       LLCI       ULCI
##      -0.7609     0.1822    -4.1773     0.0001    -1.1211    -0.4007
## 
## Direct effect of X on Y:
##       effect         se          t          p       LLCI       ULCI
##      -0.5034     0.1790    -2.8127     0.0056    -0.8574    -0.1495
## 
## Indirect effect(s) of X on Y:
##              Effect     BootSE   BootLLCI   BootULCI
## selfExpr    -0.2575     0.0909    -0.4630    -0.1089
## 
## Normal theory test for indirect effect(s):
##              Effect         se          Z          p
## selfExpr    -0.2575     0.0885    -2.9078     0.0036
## 
## ******************** ANALYSIS NOTES AND ERRORS ************************ 
## 
## Level of confidence for all confidence intervals in output: 95
## 
## Number of bootstraps for percentile bootstrap confidence intervals: 10000

Moral self-expression (with 3 variables)

SE1, SE2, SE3

Mediation analysis: security -> selfExpr -> blame

## 
## Cronbach's alpha for the 'dfselfExpr' data-set
## 
## Items: 3
## Sample units: 138
## alpha: 0.611
## 
## Bootstrap 95% CI based on 1000 samples
##  2.5% 97.5% 
## 0.445 0.724
## 
## ********************* PROCESS for R Version 4.1.1 ********************* 
##  
##            Written by Andrew F. Hayes, Ph.D.  www.afhayes.com              
##    Documentation available in Hayes (2022). www.guilford.com/p/hayes3   
##  
## *********************************************************************** 
##                   
## Model : 4         
##     Y : blame     
##     X : security_1
##     M : selfExpr  
## 
## Sample size: 138
## 
## Custom seed: 1234
## 
## 
## *********************************************************************** 
## Outcome Variable: selfExpr
## 
## Model Summary: 
##            R       R-sq        MSE          F        df1        df2          p
##       0.6627     0.4391     0.8604   106.4859     1.0000   136.0000     0.0000
## 
## Model: 
##                 coeff         se          t          p       LLCI       ULCI
## constant       4.5441     0.1125    40.3965     0.0000     4.3217     4.7666
## security_1    -1.6298     0.1579   -10.3192     0.0000    -1.9422    -1.3175
## 
## *********************************************************************** 
## Outcome Variable: blame
## 
## Model Summary: 
##            R       R-sq        MSE          F        df1        df2          p
##       0.4995     0.2495     0.9763    22.4438     2.0000   135.0000     0.0000
## 
## Model: 
##                 coeff         se          t          p       LLCI       ULCI
## constant       3.5808     0.4320     8.2887     0.0000     2.7264     4.4352
## security_1    -0.0251     0.2246    -0.1117     0.9112    -0.4694     0.4192
## selfExpr       0.4515     0.0913     4.9428     0.0000     0.2708     0.6321
## 
## ************************ TOTAL EFFECT MODEL *************************** 
## Outcome Variable: blame
## 
## Model Summary: 
##            R       R-sq        MSE          F        df1        df2          p
##       0.3372     0.1137     1.1445    17.4500     1.0000   136.0000     0.0001
## 
## Model: 
##                 coeff         se          t          p       LLCI       ULCI
## constant       5.6324     0.1297    43.4147     0.0000     5.3758     5.8889
## security_1    -0.7609     0.1822    -4.1773     0.0001    -1.1211    -0.4007
## 
## *********************************************************************** 
## Bootstrapping in progress. Please wait.
## 
## ************ TOTAL, DIRECT, AND INDIRECT EFFECTS OF X ON Y ************
## 
## Total effect of X on Y:
##       effect         se          t          p       LLCI       ULCI
##      -0.7609     0.1822    -4.1773     0.0001    -1.1211    -0.4007
## 
## Direct effect of X on Y:
##       effect         se          t          p       LLCI       ULCI
##      -0.0251     0.2246    -0.1117     0.9112    -0.4694     0.4192
## 
## Indirect effect(s) of X on Y:
##              Effect     BootSE   BootLLCI   BootULCI
## selfExpr    -0.7358     0.1924    -1.1442    -0.3797
## 
## Normal theory test for indirect effect(s):
##              Effect         se          Z          p
## selfExpr    -0.7358     0.1657    -4.4409     0.0000
## 
## ******************** ANALYSIS NOTES AND ERRORS ************************ 
## 
## Level of confidence for all confidence intervals in output: 95
## 
## Number of bootstraps for percentile bootstrap confidence intervals: 10000

Moral self-formative control (3 DVs)

SFC1, SFC2, SFC3

Mediation analysis: security -> selfFormControl -> blame

## 
## Cronbach's alpha for the 'dfselfFormControl' data-set
## 
## Items: 3
## Sample units: 138
## alpha: 0.859
## 
## Bootstrap 95% CI based on 1000 samples
##  2.5% 97.5% 
## 0.799 0.901
## 
## ********************* PROCESS for R Version 4.1.1 ********************* 
##  
##            Written by Andrew F. Hayes, Ph.D.  www.afhayes.com              
##    Documentation available in Hayes (2022). www.guilford.com/p/hayes3   
##  
## *********************************************************************** 
##                        
## Model : 4              
##     Y : blame          
##     X : security_1     
##     M : selfFormControl
## 
## Sample size: 138
## 
## Custom seed: 1234
## 
## 
## *********************************************************************** 
## Outcome Variable: selfFormControl
## 
## Model Summary: 
##            R       R-sq        MSE          F        df1        df2          p
##       0.4480     0.2007     1.3570    34.1503     1.0000   136.0000     0.0000
## 
## Model: 
##                 coeff         se          t          p       LLCI       ULCI
## constant       4.7353     0.1413    33.5207     0.0000     4.4559     5.0147
## security_1    -1.1591     0.1983    -5.8438     0.0000    -1.5513    -0.7669
## 
## *********************************************************************** 
## Outcome Variable: blame
## 
## Model Summary: 
##            R       R-sq        MSE          F        df1        df2          p
##       0.4950     0.2450     0.9822    21.9059     2.0000   135.0000     0.0000
## 
## Model: 
##                      coeff         se          t          p       LLCI
## constant            3.9585     0.3658    10.8229     0.0000     3.2352
## security_1         -0.3512     0.1887    -1.8607     0.0650    -0.7245
## selfFormControl     0.3535     0.0730     4.8454     0.0000     0.2092
##                       ULCI
## constant            4.6819
## security_1          0.0221
## selfFormControl     0.4978
## 
## ************************ TOTAL EFFECT MODEL *************************** 
## Outcome Variable: blame
## 
## Model Summary: 
##            R       R-sq        MSE          F        df1        df2          p
##       0.3372     0.1137     1.1445    17.4500     1.0000   136.0000     0.0001
## 
## Model: 
##                 coeff         se          t          p       LLCI       ULCI
## constant       5.6324     0.1297    43.4147     0.0000     5.3758     5.8889
## security_1    -0.7609     0.1822    -4.1773     0.0001    -1.1211    -0.4007
## 
## *********************************************************************** 
## Bootstrapping in progress. Please wait.
## 
## ************ TOTAL, DIRECT, AND INDIRECT EFFECTS OF X ON Y ************
## 
## Total effect of X on Y:
##       effect         se          t          p       LLCI       ULCI
##      -0.7609     0.1822    -4.1773     0.0001    -1.1211    -0.4007
## 
## Direct effect of X on Y:
##       effect         se          t          p       LLCI       ULCI
##      -0.3512     0.1887    -1.8607     0.0650    -0.7245     0.0221
## 
## Indirect effect(s) of X on Y:
##                     Effect     BootSE   BootLLCI   BootULCI
## selfFormControl    -0.4097     0.1341    -0.7090    -0.1881
## 
## Normal theory test for indirect effect(s):
##                     Effect         se          Z          p
## selfFormControl    -0.4097     0.1108    -3.6980     0.0002
## 
## ******************** ANALYSIS NOTES AND ERRORS ************************ 
## 
## Level of confidence for all confidence intervals in output: 95
## 
## Number of bootstraps for percentile bootstrap confidence intervals: 10000

Moral self-formative control (4 DVs)

SFC1, SFC2, SFC3, and SFC4

Mediation analysis: security -> selfFormControl2 -> blame

## 
## Cronbach's alpha for the 'dfselfFormControl2' data-set
## 
## Items: 4
## Sample units: 138
## alpha: 0.815
## 
## Bootstrap 95% CI based on 1000 samples
##  2.5% 97.5% 
## 0.755 0.864
## 
## ********************* PROCESS for R Version 4.1.1 ********************* 
##  
##            Written by Andrew F. Hayes, Ph.D.  www.afhayes.com              
##    Documentation available in Hayes (2022). www.guilford.com/p/hayes3   
##  
## *********************************************************************** 
##                         
## Model : 4               
##     Y : blame           
##     X : security_1      
##     M : selfFormControl2
## 
## Sample size: 138
## 
## Custom seed: 1234
## 
## 
## *********************************************************************** 
## Outcome Variable: selfFormControl2
## 
## Model Summary: 
##            R       R-sq        MSE          F        df1        df2          p
##       0.5842     0.3413     1.0164    70.4648     1.0000   136.0000     0.0000
## 
## Model: 
##                 coeff         se          t          p       LLCI       ULCI
## constant       4.5588     0.1223    37.2886     0.0000     4.3171     4.8006
## security_1    -1.4410     0.1717    -8.3943     0.0000    -1.7804    -1.1015
## 
## *********************************************************************** 
## Outcome Variable: blame
## 
## Model Summary: 
##            R       R-sq        MSE          F        df1        df2          p
##       0.4826     0.2329     0.9980    20.4896     2.0000   135.0000     0.0000
## 
## Model: 
##                       coeff         se          t          p       LLCI
## constant             3.8586     0.4059     9.5073     0.0000     3.0560
## security_1          -0.2003     0.2096    -0.9557     0.3410    -0.6148
## selfFormControl2     0.3891     0.0850     4.5790     0.0000     0.2210
##                        ULCI
## constant             4.6613
## security_1           0.2142
## selfFormControl2     0.5571
## 
## ************************ TOTAL EFFECT MODEL *************************** 
## Outcome Variable: blame
## 
## Model Summary: 
##            R       R-sq        MSE          F        df1        df2          p
##       0.3372     0.1137     1.1445    17.4500     1.0000   136.0000     0.0001
## 
## Model: 
##                 coeff         se          t          p       LLCI       ULCI
## constant       5.6324     0.1297    43.4147     0.0000     5.3758     5.8889
## security_1    -0.7609     0.1822    -4.1773     0.0001    -1.1211    -0.4007
## 
## *********************************************************************** 
## Bootstrapping in progress. Please wait.
## 
## ************ TOTAL, DIRECT, AND INDIRECT EFFECTS OF X ON Y ************
## 
## Total effect of X on Y:
##       effect         se          t          p       LLCI       ULCI
##      -0.7609     0.1822    -4.1773     0.0001    -1.1211    -0.4007
## 
## Direct effect of X on Y:
##       effect         se          t          p       LLCI       ULCI
##      -0.2003     0.2096    -0.9557     0.3410    -0.6148     0.2142
## 
## Indirect effect(s) of X on Y:
##                      Effect     BootSE   BootLLCI   BootULCI
## selfFormControl2    -0.5606     0.1755    -0.9528    -0.2660
## 
## Normal theory test for indirect effect(s):
##                      Effect         se          Z          p
## selfFormControl2    -0.5606     0.1402    -3.9980     0.0001
## 
## ******************** ANALYSIS NOTES AND ERRORS ************************ 
## 
## Level of confidence for all confidence intervals in output: 95
## 
## Number of bootstraps for percentile bootstrap confidence intervals: 10000

Third self-expression item

SE3: To what extent do you think Kevin’s criminal behavior reflects the circumstances in which he grew up?

[0=Not at all, …, 6=Extremely]

Note: This variable has been reverse coded.

Mediation analysis: security -> SE3 -> blame

## 
## ********************* PROCESS for R Version 4.1.1 ********************* 
##  
##            Written by Andrew F. Hayes, Ph.D.  www.afhayes.com              
##    Documentation available in Hayes (2022). www.guilford.com/p/hayes3   
##  
## *********************************************************************** 
##                   
## Model : 4         
##     Y : blame     
##     X : security_1
##     M : SE3       
## 
## Sample size: 138
## 
## Custom seed: 1234
## 
## 
## *********************************************************************** 
## Outcome Variable: SE3
## 
## Model Summary: 
##            R       R-sq        MSE          F        df1        df2          p
##       0.7810     0.6100     1.6950   212.6757     1.0000   136.0000     0.0000
## 
## Model: 
##                 coeff         se          t          p       LLCI       ULCI
## constant       4.6471     0.1579    29.4342     0.0000     4.3348     4.9593
## security_1    -3.2328     0.2217   -14.5834     0.0000    -3.6711    -2.7944
## 
## *********************************************************************** 
## Outcome Variable: blame
## 
## Model Summary: 
##            R       R-sq        MSE          F        df1        df2          p
##       0.3559     0.1267     1.1361     9.7910     2.0000   135.0000     0.0001
## 
## Model: 
##                 coeff         se          t          p       LLCI       ULCI
## constant       5.1706     0.3509    14.7346     0.0000     4.4766     5.8646
## security_1    -0.4397     0.2906    -1.5131     0.1326    -1.0144     0.1350
## SE3            0.0994     0.0702     1.4154     0.1593    -0.0395     0.2382
## 
## ************************ TOTAL EFFECT MODEL *************************** 
## Outcome Variable: blame
## 
## Model Summary: 
##            R       R-sq        MSE          F        df1        df2          p
##       0.3372     0.1137     1.1445    17.4500     1.0000   136.0000     0.0001
## 
## Model: 
##                 coeff         se          t          p       LLCI       ULCI
## constant       5.6324     0.1297    43.4147     0.0000     5.3758     5.8889
## security_1    -0.7609     0.1822    -4.1773     0.0001    -1.1211    -0.4007
## 
## *********************************************************************** 
## Bootstrapping in progress. Please wait.
## 
## ************ TOTAL, DIRECT, AND INDIRECT EFFECTS OF X ON Y ************
## 
## Total effect of X on Y:
##       effect         se          t          p       LLCI       ULCI
##      -0.7609     0.1822    -4.1773     0.0001    -1.1211    -0.4007
## 
## Direct effect of X on Y:
##       effect         se          t          p       LLCI       ULCI
##      -0.4397     0.2906    -1.5131     0.1326    -1.0144     0.1350
## 
## Indirect effect(s) of X on Y:
##         Effect     BootSE   BootLLCI   BootULCI
## SE3    -0.3212     0.2470    -0.8737     0.0979
## 
## Normal theory test for indirect effect(s):
##         Effect         se          Z          p
## SE3    -0.3212     0.2286    -1.4055     0.1599
## 
## ******************** ANALYSIS NOTES AND ERRORS ************************ 
## 
## Level of confidence for all confidence intervals in output: 95
## 
## Number of bootstraps for percentile bootstrap confidence intervals: 10000

circumstances (with 2 variables)

SE3 and SFC4

Mediation analysis: security -> circumstances -> blame

## 
## Cronbach's alpha for the 'dfcircumstances' data-set
## 
## Items: 2
## Sample units: 138
## alpha: 0.862
## 
## Bootstrap 95% CI based on 1000 samples
##  2.5% 97.5% 
## 0.790 0.914
## 
## ********************* PROCESS for R Version 4.1.1 ********************* 
##  
##            Written by Andrew F. Hayes, Ph.D.  www.afhayes.com              
##    Documentation available in Hayes (2022). www.guilford.com/p/hayes3   
##  
## *********************************************************************** 
##                      
## Model : 4            
##     Y : blame        
##     X : security_1   
##     M : circumstances
## 
## Sample size: 138
## 
## Custom seed: 1234
## 
## 
## *********************************************************************** 
## Outcome Variable: circumstances
## 
## Model Summary: 
##            R       R-sq        MSE          F        df1        df2          p
##       0.7707     0.5940     1.3201   198.9856     1.0000   136.0000     0.0000
## 
## Model: 
##                 coeff         se          t          p       LLCI       ULCI
## constant       4.3382     0.1393    31.1357     0.0000     4.0627     4.6138
## security_1    -2.7597     0.1956   -14.1062     0.0000    -3.1465    -2.3728
## 
## *********************************************************************** 
## Outcome Variable: blame
## 
## Model Summary: 
##            R       R-sq        MSE          F        df1        df2          p
##       0.3577     0.1279     1.1345     9.9013     2.0000   135.0000     0.0001
## 
## Model: 
##                    coeff         se          t          p       LLCI       ULCI
## constant          5.1210     0.3683    13.9063     0.0000     4.3927     5.8493
## security_1       -0.4356     0.2846    -1.5305     0.1282    -0.9985     0.1273
## circumstances     0.1179     0.0795     1.4829     0.1404    -0.0393     0.2751
## 
## ************************ TOTAL EFFECT MODEL *************************** 
## Outcome Variable: blame
## 
## Model Summary: 
##            R       R-sq        MSE          F        df1        df2          p
##       0.3372     0.1137     1.1445    17.4500     1.0000   136.0000     0.0001
## 
## Model: 
##                 coeff         se          t          p       LLCI       ULCI
## constant       5.6324     0.1297    43.4147     0.0000     5.3758     5.8889
## security_1    -0.7609     0.1822    -4.1773     0.0001    -1.1211    -0.4007
## 
## *********************************************************************** 
## Bootstrapping in progress. Please wait.
## 
## ************ TOTAL, DIRECT, AND INDIRECT EFFECTS OF X ON Y ************
## 
## Total effect of X on Y:
##       effect         se          t          p       LLCI       ULCI
##      -0.7609     0.1822    -4.1773     0.0001    -1.1211    -0.4007
## 
## Direct effect of X on Y:
##       effect         se          t          p       LLCI       ULCI
##      -0.4356     0.2846    -1.5305     0.1282    -0.9985     0.1273
## 
## Indirect effect(s) of X on Y:
##                   Effect     BootSE   BootLLCI   BootULCI
## circumstances    -0.3253     0.2320    -0.8267     0.0843
## 
## Normal theory test for indirect effect(s):
##                   Effect         se          Z          p
## circumstances    -0.3253     0.2211    -1.4711     0.1413
## 
## ******************** ANALYSIS NOTES AND ERRORS ************************ 
## 
## Level of confidence for all confidence intervals in output: 95
## 
## Number of bootstraps for percentile bootstrap confidence intervals: 10000