Effect of SES1 on blame

Unstandardized:

## 
## Call:
## lm(formula = "blame ~ SES1", data = df)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -5.2012 -0.5908  0.2144  0.4092  1.3832 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  4.61684    0.16060  28.747  < 2e-16 ***
## SES1         0.19479    0.04123   4.725 5.68e-06 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.053 on 136 degrees of freedom
## Multiple R-squared:  0.141,  Adjusted R-squared:  0.1347 
## F-statistic: 22.32 on 1 and 136 DF,  p-value: 5.679e-06

Standardized:

## 
## Call:
## lm(formula = scale(blame) ~ scale(SES1), data = df)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -4.5938 -0.5218  0.1894  0.3614  1.2216 
## 
## Coefficients:
##               Estimate Std. Error t value Pr(>|t|)    
## (Intercept) -1.815e-16  7.919e-02   0.000        1    
## scale(SES1)  3.755e-01  7.947e-02   4.725 5.68e-06 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.9302 on 136 degrees of freedom
## Multiple R-squared:  0.141,  Adjusted R-squared:  0.1347 
## F-statistic: 22.32 on 1 and 136 DF,  p-value: 5.679e-06

Effect of SES2 on blame

Unstandardized:

## 
## Call:
## lm(formula = "blame ~ SES2", data = df)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -4.9778 -0.6132  0.2341  0.5986  1.4459 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  4.55411    0.17244  26.409  < 2e-16 ***
## SES2         0.21182    0.04506   4.701 6.28e-06 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.054 on 136 degrees of freedom
## Multiple R-squared:  0.1398, Adjusted R-squared:  0.1334 
## F-statistic:  22.1 on 1 and 136 DF,  p-value: 6.278e-06

Standardized:

## 
## Call:
## lm(formula = scale(blame) ~ scale(SES2), data = df)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -4.3965 -0.5416  0.2067  0.5287  1.2770 
## 
## Coefficients:
##              Estimate Std. Error t value Pr(>|t|)    
## (Intercept) 2.410e-16  7.924e-02   0.000        1    
## scale(SES2) 3.739e-01  7.953e-02   4.701 6.28e-06 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.9309 on 136 degrees of freedom
## Multiple R-squared:  0.1398, Adjusted R-squared:  0.1334 
## F-statistic:  22.1 on 1 and 136 DF,  p-value: 6.278e-06

Effect of SES (composite) on blame

Unstandardized:

## 
## Call:
## lm(formula = "blame ~ SES", data = df)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -5.0893 -0.6129  0.2536  0.4343  1.4343 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  4.56570    0.16765   27.23  < 2e-16 ***
## SES          0.20944    0.04363    4.80 4.11e-06 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.051 on 136 degrees of freedom
## Multiple R-squared:  0.1449, Adjusted R-squared:  0.1386 
## F-statistic: 23.04 on 1 and 136 DF,  p-value: 4.114e-06

Standardized:

## 
## Call:
## lm(formula = scale(blame) ~ scale(SES), data = df)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -4.4950 -0.5413  0.2240  0.3836  1.2668 
## 
## Coefficients:
##               Estimate Std. Error t value Pr(>|t|)    
## (Intercept) -4.586e-17  7.901e-02     0.0        1    
## scale(SES)   3.806e-01  7.929e-02     4.8 4.11e-06 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.9281 on 136 degrees of freedom
## Multiple R-squared:  0.1449, Adjusted R-squared:  0.1386 
## F-statistic: 23.04 on 1 and 136 DF,  p-value: 4.114e-06